
Chapter 1
Fault Tolerance Techniques
for High-Performance Computing

Jack Dongarra, Thomas Herault and Yves Robert

Abstract This chapter provides an introduction to resiliencemethods. The emphasis
is on checkpointing, the de-facto standard technique for resilience in High Perfor-
mance Computing. We present the main two protocols, namely coordinated check-
pointing and hierarchical checkpointing. Thenwe introduce performancemodels and
use them to assess the performance of theses protocols. We cover the Young/Daly
formula for the optimal period andmuchmore! Next we explain how the efficiency of
checkpointing can be improved via fault prediction or replication. Then we move to
application-specific methods, such as ABFT. We conclude the chapter by discussing
techniques to cope with silent errors (or silent data corruption).

1.1 Introduction

This chapter provides an overview of fault tolerance techniques for High
Performance Computing (HPC). We present scheduling algorithms to cope with
faults on large-scale parallel platforms. We start with a few general considerations
on resilience at scale (Sect. 1.1.1) before introducing standard failure probability
distributions (Sect. 1.1.2). The main topic of study is checkpointing, the de-facto
standard technique for resilience in HPC. We present the main protocols, coordi-
nated and hierarchical, in Sect. 1.2. We introduce probabilistic performance models
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to assess these protocols in Sect. 1.3. In particular, we show how to compute the
optimal checkpointing period (the famous Young/Daly formula [25, 69]) and derive
several extensions. Then Sect. 1.4 explains how to combine checkpointing with fault
prediction, and discuss how the optimal period is modified when this combination is
used (Sect. 1.4.1). We follow the very same approach for the combination of check-
pointing with replication (Sect. 1.4.2).

While checkpointing (possibly coupled with fault prediction or replication) is a
general-purpose method, there exist many application-specific methods. In Sect. 1.5,
we present middleware adaptations to enable application-specific fault tolerance,
and illustrate their use on one of the most important one, ABFT, which stands for
Algorithm based Fault Tolerance, in Sect. 1.5.

The last technical section of this chapter (Sect. 1.6) is devoted to techniques to
cope with silent errors (or silent data corruption). Section1.7 concludes the chapter
with final remarks.

1.1.1 Resilience at Scale

For HPC applications, scale is a major opportunity. Massive parallelism with
100,000+ nodes is the most viable path to achieving sustained Petascale perfor-
mance. Future platforms will enroll even more computing resources to enter the
Exascale era. Current plans refer to systems eitherwith 100,000 nodes, each equipped
with 10,000 cores (the fat node scenario), or with 1,000,000 nodes, each equipped
with 1,000 cores (the slim node scenario) [27].

Unfortunately, scale is also a major threat, because resilience becomes a big
challenge. Even if each node provides an individual MTBF (Mean Time Between
Failures) of, say, one century, a machine with 100,000 such nodes will encounter a
failure every 9 hours in average, which is larger than the execution time of many
HPC applications. Worse, a machine with 1,000,000 nodes (also with a one-century
MTBF) will encounter a failure every 53min in average.1 Note that a one-century
MTBF per node is an optimistic figure, given that each node is composed of several
hundreds or thousands of cores.

To further darken the picture, several types of errors need to be considered when
computing at scale. In addition to classical fail-stop errors (such as hardware failures),
silent errors (a.k.a silent data corruptions) must be taken into account. Contrary
to fail-stop failures, silent errors are not detected immediately, but instead after
some arbitrary detection latency, which complicates methods to cope with them.
See Sect. 1.6 for more details.

1See Sect. 1.3.2.1 for a detailed explanation on how these values (9h or 53min) are computed.
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1.1.2 Faults and Failures

There are many types of errors, faults, or failures. Some are transient, others are
unrecoverable. Some cause a fatal interruption of the application as soon as they
strike, others may corrupt the data in a silent way and will manifest only after an
arbitrarily long delay. We refer to Chap.2 for a detailed classification and analysis
of error sources.

In this chapter, we mainly deal with fail-stop failures, which are unrecoverable
failures that interrupt the execution of the application. These include all hardware
faults, and some software ones. We use the terms fault and failure interchangeably.
Again, silent errors are addressed at the end of the chapter, in Sect. 1.6.

Regardless of the fault type, the first question is to quantify the rate or frequency
at which these faults strike. For that purpose, one uses probability distributions, and
more specifically, Exponential probability distributions. The definition of Exp(λ),
the Exponential distribution law of parameter λ, goes as follows:

• The probability density function is f (t) = λe−λt dt for t ≥ 0;
• The cumulative distribution function is F(t) = 1 − e−λt for t ≥ 0;
• The mean is µ = 1

λ .

Consider a process executing in a fault-prone environment. The time-steps at
which fault strike are nondeterministic, meaning that they vary from one execution
to another. To model this, we use I.I.D. (Independent and Identically Distributed)
random variables X1, X2, X3, . . . . Here X1 is the delay until the first fault, X2 is
the delay between the first and second faults, X3 is the delay between the second
and third faults, and so on. All these random variables obey the same probability
distribution Exp(λ). We write Xi ∼ Exp(λ) to express that Xi obeys an Exponential
distribution Exp(λ).

In particular, each Xi has the same mean E (Xi ) = µ. This amounts to say that,
in average, a fault will strike every µ seconds. This is why µ is called the MTBF of
the process, where MTBF stands forMean Time Between Faults: one can show (see
Sect. 1.3.2.1 for a proof) that the expected number of faults Nfaults(T ) that will strike
during T seconds is such that

lim
T→∞

Nfaults(T )
T

= 1
µ

(1.1)

Why are Exponential distribution laws so important? This is because of their
memoryless property, which writes: if X ∼ Exp(λ), then P (X ≥ t + s | X ≥ s ) =
P (X ≥ t) for all t, s ≥ 0. This equation means that at any instant, the delay until the
next fault does not depend upon the time that has elapsed since the last fault. The
memoryless property is equivalent to saying that the fault rate is constant. The fault
rate at time t , rate(t), is defined as the (instantaneous) rate of fault for the survivors
to time t , during the next instant of time:
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rate(t) = lim
∆→0

F(t + ∆) − F(t)
∆

× 1
1 − F(t)

= f (t)
1 − F(t)

= λ = 1
µ

The fault rate is sometimes called a conditional fault rate since the denominator
1− F(t) is the probability that no fault has occurred until time t , hence converts the
expression into a conditional rate, given survival past time t .

We have discussed Exponential laws above, but other probability laws could be
used. For instance, it may not be realistic to assume that the fault rate is constant:
indeed, computers, like washing machines, suffer from a phenomenon called infant
mortality: the probability of fault is higher in the first weeks than later on. In other
words, the fault rate is not constant but instead decreasing with time. Well, this is
true up to a certain point, where another phenomenon called aging takes over: your
computer, like your car, becomes more and more subject to faults after a certain
amount of time: then the fault rate increases! However, after a few weeks of service
and before aging, there are a few years during which it is a good approximation
to consider that the fault rate is constant, and therefore to use an Exponential law
Exp(λ) to model the occurrence of faults. The key parameter is the MTBF µ = 1

λ .
Weibull distributions are a good example of probability distributions that account

for infant mortality, and they are widely used to model failures on computer plat-
forms [39, 42, 43, 54, 67]. The definition ofWeibull(λ), theWeibull distribution law
of shape parameter k and scale parameter λ, goes as follows:

• The probability density function is f (t) = kλ(tλ)k−1e−(λt)k dt for t ≥ 0;
• The cumulative distribution function is F(t) = 1 − e−(λt)k ;
• The mean is µ = 1

λΓ (1+ 1
k ).

If k = 1, we retrieve an Exponential distribution Exp(λ) and the failure rate is
constant. But if k < 1, the failure rate decreases with time, and the smaller k, the
more important the decreasing. Values used in the literature are k = 0.7 or k = 0.5
[39, 54, 67].

1.2 Checkpoint and Rollback Recovery

Designing a fault-tolerant system can be done at different levels of the software stack.
We call general-purpose the approaches that detect and correct the failures at a given
level of that stack, masking them entirely to the higher levels (and ultimately to the
end-user, who eventually see a correct result, despite the occurrence of failures).
General-purpose approaches can target specific types of failures (e.g., message loss,
or message corruption), and let other types of failures hit higher levels of the software
stack. In this section,we discuss a set ofwell-known and recently developed protocols
to provide general-purpose fault tolerance for a large set of failure types, at different
levels of the software stack, but always below the application level.

These techniques are designed to work in spite of the application behavior. When
developing a general-purpose fault-tolerant protocol, two adversaries must be taken
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into account: the occurrence of failures, that hit the system at unpredictablemoments,
and the behavior of the application, that is designed without taking into account the
risk of failure, or the fault-tolerant protocol. All general-purpose fault tolerance
technique rely on the same idea: introduce automatically computed redundant infor-
mation, and use this redundancy to mask the occurrence of failures to the higher level
application.

The general-purpose technique most widely used in HPC relies on checkpointing
and rollback recovery: parts of the execution are lost when processes are subject to
failures (either because the corresponding data is lost when the failure is a crash, or
because it is corrupted due to a silent error), and the fault-tolerant protocol, when
catching such errors, uses past checkpoints to restore the application in a consistent
state, and recomputes the missing parts of the execution. We first discuss the tech-
niques available to build and store process checkpoints, and then give an overview
of the most common protocols using these checkpoints in a parallel application.

1.2.1 Process Checkpointing

The goal of process checkpointing is to save the current state of a process. In current
HPC applications, a process consists of many user-level or system-level threads,
making it a parallel application by itself. Process checkpointing techniques generally
use a coarse-grain locking mechanism to interrupt momentarily the execution of all
the threads of the process, giving them a global view of its current state, and reducing
the problem of saving the process state to a sequential problem.

Independently of the tool used to create the checkpoint, we distinguish three
parameters to characterize a process checkpoint:

• At what level of the software stack it is created;
• How it is generated;
• How it is stored.

Level of the software stack. Many process checkpointing frameworks are avail-
able: they can rely on an operating system extension [41], on dynamic libraries,2

on compilers [50, 53, 62, 63], on a user-level API [5], or on a user-defined routine
that will create an application-specific checkpoint [47]. The different approaches
provide different levels of transparency and efficiency. At the lowest level, operating
system extensions, like BLCR [41], provide a completely transparent checkpoint of
the whole process. Such a checkpoint can be restored on the same hardware, with
the same software environment (operating system, dynamic libraries, etc.). Since
the entire state is saved (from CPU registers to the virtual memory map), the func-
tion call stack is also saved and restored automatically. From a programmatic point
of view, the checkpoint routine returns with a different error code, to let the caller
know if this calls returns from a successful checkpoint or from a successful restart.

2See https://code.google.com/p/cryopid/.
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System-level checkpointing requires to save the entire memory (although an API
allows to explicitly exclude pages from being saved into the checkpoint, in which
case the pages are reallocated at restore time, but filled with 0), and thus the cost of
checkpointing is directly proportional to the memory footprint of the process. The
checkpoint routine is entirely preemptive: it can be called at any point during the
execution, from any thread of the application (as long as another thread is not inside
the checkpoint routine already).

At the highest level, user-defined application-specific routines are functions that
a fault-tolerant protocol can call, to create a serialized view of the application, that
another user-defined application-specific routine can load to restore a meaningful
state of the process. Such an approach does not belong to general-purpose tech-
niques, since it is application dependent. It is worth noting, however, that some
resilient communication middleware propose this option to implement an efficient
generic rollback-recovery protocol at the parallel application level. Indeed, as we
will see later in the chapter, time to checkpoint is a critical parameter of the overall
efficiency of a rollback-recovery technique. User-defined process checkpoints are
often orders of magnitude smaller than the process memory footprint, because inter-
mediary data, or data that is easily reconstructed from other critical data, do not
need to be saved. User-defined checkpoints also benefit from a more diverse use than
solely fault tolerance: they allow to do a post-mortem analysis of the application
progress; they permit to restart the computation at intermediary steps, and change
the behavior of the application. For these reasons, many applications provide such
routines, which is the reason why fault-tolerant protocols try to also benefit from
them. It is however difficult to implement a preemptive user-defined routine, capable
of saving the process state at any time during the execution, which makes the use
of such approach sometimes incompatible with some parallel application resilient
protocols that demand to take process checkpoints at arbitrary times.

A note should be made about opened files: most existing tools to checkpoint a
process do not provide an automatic way to save the content of the files opened for
writing at the time of checkpoint. Files that are opened in read mode are usually
reopened at the same position during the restoration routine; files that are opened in
append mode can be easily truncated where the file pointer was located at the time
of checkpoint during the restore; files that are opened in read/write mode, however,
or files that are accessed through a memory map in read/write, must be copied at the
time of checkpoint, and restored at the time of rollback. Among the frameworks that
are cited above, none of them provide an automatic way of restoring the files, which
remains the responsibility of the resilient protocol implementation.

How checkpoints are generated. The checkpoint routine, provided by the check-
pointing framework, is usually a blocking call that terminates once the serial file
representing the process checkpoint is complete. It is often beneficial, however, to
be able to save the checkpoint in memory, or to allow the application to continue
its progress in parallel with the I/O intensive part of the checkpoint routine. To do
so, generic techniques, like process duplication at checkpoint time can be used, if
enough memory is available on the node: the checkpoint can be made asynchronous
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by duplicating the entire process, and letting the parent process continue its execution,
while the child process checkpoints and exits. This technique relies on the copy-on-
write pages duplication capability of modern operating systems to ensure that if the
parent process modifies a page, the child will get its own private copy, keeping the
state of the process at the time of entering the checkpoint routine. Depending on the
rate at which the parent process modifies its memory, and depending on the amount
of available physical memory on the machine, overlapping between the checkpoint
creation and the application progress can thus be achieved, or not.

How checkpoints are stored. A process checkpoint can be considered as completed
once it is stored in a non-corruptible space. Depending on the type of failures con-
sidered, the available hardware, and the risk taken, this non-corruptible space can
be located close to the original process, or very remote. For example, when deal-
ing with low probability memory corruption, a reasonable risk consists of simply
keeping a copy of the process checkpoint in the same physical memory; at the other
extreme, the process checkpoint can be stored in a remote redundant file system,
allowing any other node compatible with such a checkpoint to restart the process,
even in case of machine shutdown. Current state-of-the-art libraries provide trans-
parent multiple storage points, along a hierarchy of memory: [57], or [5], implement
in-memory double-checkpointing strategies at the closest level, disk-less checkpoint-
ing, NVRAMcheckpointing, and remote file system checkpointing, to feature a com-
plete collection of storage techniques. Checkpoint transfers happen asynchronously
in the background, making the checkpoints more reliable as transfers progress.

1.2.2 Coordinated Checkpointing

Distributed checkpointing protocols use process checkpointing and message passing
to design rollback-recovery procedures at the parallel application level. Among them
the first approach was proposed in 1984 by Chandy and Lamport, to build a possible
global state of a distributed system [20]. The goal of this protocol is to build a
consistent distributed snapshot of the distributed system. A distributed snapshot is
a collection of process checkpoints (one per process), and a collection of in-flight
messages (an ordered list of messages for each point to point channel). The protocol
assumes ordered loss-less communication channel; for a given application, messages
can be sent or received after or before a process took its checkpoint. A message from
process p to process q that is sent by the application after the checkpoint of process p
but received before process q checkpointed is said to be an orphanmessage. Orphan
messages must be avoided by the protocol, because they are going to be regenerated
by the application, if it were to restart in that snapshot. Similarly, a message from
process p to process q that is sent by the application before the checkpoint of process
p but received after the checkpoint of process q is said to be missing. That message
must belong to the list of messages in channel p to q, or the snapshot is inconsistent.
A snapshot that includes no orphan message, and for which all the saved channel
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Fig. 1.1 Orphan and missing messages

messages are missing messages is consistent, since the application can be started
from that state and pursue its computation correctly.

To build such snapshots, the protocol of Chandy and Lamport works as follows
(see Fig. 1.1): any process may decide to trigger a checkpoint wave by taking its
local process checkpoint (we say the process entered the checkpoint wave), and by
notifying all other processes to participate to this wave (it sends them a notifica-
tion message). Because channels are ordered, when a process receives a checkpoint
wave notification, it can separate what messages belong to the previous checkpoint
wave (messages received before the notification in that channel), and what belong to
the new one (messages received after the notification). Messages that belong to the
current checkpoint wave are appended to the process checkpoint, to complete the
state of the distributed application with the content of the in-flight messages, during
the checkpoint. Upon reception of a checkpoint wave notification for the first time,
a process takes it local checkpoint, entering the checkpoint wave, and notifies all
others that it did so. Once a notification per channel is received, the local checkpoint
is complete, since no message can be left in flight, and the checkpoint wave is locally
complete. Once all processes have completed their checkpoint wave, the checkpoint
is consistent, and can be used to restart the application in a state that is consistent
with its normal behavior.

Different approaches have been used to implement this protocol. They are dis-
cussed in detail in the case of the Message Passing Interface (MPI) in Chap.3. The
main difference is on how the content of the (virtual) communication channels is
saved. A simple approach, called Blocking Coordinated Checkpointing, consists in
delaying the emission of applicationmessages after entering the checkpointingwave,
and moving the process checkpointing at the end of that wave, when the process is
ready to leave it (see Fig. 1.3). That way, the state of communication channels is saved
within the process checkpoint itself, at the cost of delaying the execution of the appli-
cation. The other approach, called Non-Blocking Coordinated Checkpointing, is a
more straightforward implementation of the algorithm by Chandy and Lamport: in-
flight messages are added, as they are discovered, in the process checkpoint of the
receiver, and reinjected in order in the “unexpected” messages queues, when loading
the checkpoint (see Fig. 1.2).
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Fig. 1.2 Non-blocking coordinated rollback recovery protocol

notification

Time

fault

S S C R S

R C R R R

C R

Fig. 1.3 Blocking coordinated rollback recovery protocol

At the application level, resilient application developers have often taken a very
simple approach to ensure the consistency of the snapshot: since the protocol is
designed knowing the application, a couple of synchronizing barriers can be used,
before and after taking the process checkpoints, to guarantee that no application in-
flight messages are present at the time of triggering the checkpoint wave, and thus
the causal ordering of communications inside the application is used to avoid the
issue entirely.

1.2.3 Uncoordinated Checkpointing

Blocking or non-blocking, the coordinated checkpointing protocols require that all
processes rollback to the last valid checkpoint wave, when a failure occurs. This
ensures a global consistency, at the cost of scalability: as the size of the system grows,
the probability of failures increase, and the minimal cost to handle such failures also
increase. Indeed, consider only the simple issue of notifying all processes that a
rollback is necessary: this can hardly be achieved in constant time, independent
of the number of living processes in the system. Chapter 3 will present in further
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details how uncoordinated checkpointing can be implemented in an MPI library (see
Sect. 3.2), but we present here the general approach to compare it with the other
protocols.

To reduce the inherent costs of coordinated checkpointing, uncoordinated check-
pointing protocols have thus been proposed. On the failure-free part of the execution,
the main idea is to remove the coordination of checkpointing, targeting a reduction
of the I/O pressure when checkpoints are stored on shared space, and the reduction of
delays or increased network usage when coordinating the checkpoints. Furthermore,
uncoordinated protocols aim at forcing the restart of a minimal set of processes when
a failure happens. Ideally, only the processes subject to a failure should be restarted.
However, this requires additional steps.

Consider, for example, a naive protocol, that will let processes checkpoint their
local state at any time, without coordination, and in case of failures will try to find a
consistent checkpoint wave (in the sense of the Chandy-Lamport algorithm) from a
set of checkpoints taken at random times. Even if we assume that all checkpoints are
kept until the completion of the execution (which is unrealistic from a storage point of
view), finding a consistentwave from randomcheckpointsmight prove impossible, as
illustrated by Fig. 1.4. Starting from the last checkpoint (C1) of process p, all possible
waves that include checkpointC2 of process q will cross themessagem, thus creating
another missing message. It is thus necessary to consider a previous checkpoint for
p. But all waves including the checkpoint C3 for p and the checkpoint C2 for q will
cross the message m′, creating a missing message. A previous checkpoint must thus
be considered for q. This effect, that will invalidate all checkpoint taken randomly,
forcing the application to restart from scratch, is called the domino effect. To avoid
it, multiple protocols have been considered, taking additional assumptions about the
application into account.

1.2.3.1 Piecewise Deterministic Assumption

One such assumption is thePiecewiseDeterministicAssumption (PWD). It states that
a sequential process is an alternate sequence of a nondeterministic choices followed
by a set of deterministic steps. As such, the PWD is not really an assumption: it

Time

m m
p S C3 R S C1

q S C6 R S C2 R R

r C5 R S C4 S

Fig. 1.4 Optimistic uncoordinated protocol: Illustration of the domino effect
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is a way to describe a possible execution of a sequential program. The assumption
resides in the fact that these nondeterministic choices can be captured and their effect
replayed. Thus, under the PWD assumption, the behavior of a sequential process can
be entirely guided from a given state to another deterministic state by forcing each
nondeterministic choice between these two states.

Translated in the HPC world, and especially under the Message Passing Interface
(MPI) paradigm, the sources of nondeterminism are rather small. Indeed, all actions
that depend upon the input data (environment or user options) are not nondetermin-
istic only in the sense of the PWD assumption: starting from the same state, the same
action will follow. Pseudo-random generators fall also in this category of determin-
istic actions. So, in an MPI application, the only source of nondeterminism comes
from time-sensitive decisions, point-to-point message reception order (and request
completion order), and related actions (like probe). All these actions are captured by
the MPI library (assuming the program relies only on MPI routines to measure time,
if its state is time dependent), that is also capable of replaying any value that was
returned by a previous call.

In most modern architectures, processes whose state depend on timing have non-
deterministic actions, since with modern CPUs and network, an instruction can take
a varying time, depending on the actions of other processes sharing the machine, or
the operating system, and a misplaced message reception can change significantly
this timing measurement. Many MPI operations have a deterministic behavior (e.g.,
sending a message does not change the state of the sending process; participating to a
broadcast operation, seen as an atomic operation, will have a deterministic effect on
the state of all processes participating to it, etc...). However,MPI allows the program-
mer to reorder message receptions, or to not specify an order on the messages recep-
tion (usingwildcard reception tags, likeMPI_ANY_TAG, orMPI_ANY_SOURCE),
that enables the library to deliver the messages in an order that is the most efficient,
and thus execution-dependent. These actions are then necessarily nondeterministic,
since the state of the process between such two receptions depends on what reception
actually happened.

Then, consider a parallel application built of sequential processes that use MPI
to communicate and synchronize. In case of failure, by replaying the sequence of
messages and test/probe with the same result that the process that failed obtained
in the initial execution (from the last checkpoint), one can guide the execution of a
process to its exact state just before the failure.

1.2.3.2 Message Logging

This leads to the concept of Message Logging (ML). The goal of message logging,
in this context, is to provide a tool to capture and replay the most frequent of nonde-
terministic events: message receptions. To be able to reproduce a message reception,
one needs to deliver it in the right order, and with the appropriate content. Message
logging thus features two essential parts: a log of the event itself, and a log of the
content of the message.
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Events Identifiers. Events are usually identified by a few counters: based on the
same idea as logical clocks of Lamport [52], these identifiers define a partial order
that is sufficient to ensure the consistency of the distributed system by capturing the
causality of the nondeterministic events. Inmost implementations, a nondeterministic
message identifier consists of a 4-tuple: identifier of the message emitter, sequence
number of emission in that channel, identifier of the message receiver, sequence
number of delivery of that message.

The first two counters uniquely identify an outgoing message at the sender. They
are used to connect that event identifier with the corresponding payload log. The
second two counters make the delivery deterministic. They can only be assigned
once the message is delivered by the receiver during the first execution.

A collection of event logs builds the history of a distributed application. If all
event logs with the same message receiver identifier are considered, the execution
of the receiver is made deterministic up to the end of the log: that process knows
exactly what messages it must receive, and in which order they must be delivered.

In some applications, other nondeterministic events may be interleaved between
message receptions, and the global ordering of these events on that process must
be kept (as well as all information needed to replay these events). For example, in
the MPI case, the evaluation of a routine like MPI_Probe() is nondeterministic:
the routine will return true or false depending upon the internal state of the
library, that depends itself upon the reception of messages. A simple event logging
strategy is to remember the return value of each MPI_Probe(), associated with an
internal event sequence number, to augment the message log with the same internal
event sequence number to remember the global ordering of process-specific internal
events, and to store these events in the same place as the message logs. To replay the
execution, one then needs to have these routines return the same value as during the
initial execution, whatever the internal state of the library, and deliver the messages
in the order specified by the history. As a result, the library may have to introduce
delays, reorder messages, or wait for the arrival of messages that were supposed to
be delivered but are not available yet. But the process will be guided to the exact
state it reached when the log was interrupted, which is the goal of message logging.

Payload Logging. To deliver messages in replay mode, the receiving process needs
to have access to the message payload: its event log is not sufficient. The most widely
used approach to provide this payload is to keep a copy at the sender. This is called
sender-based message logging (although this is a slight abuse of language, as events
can be stored at a separate place different from the sender).

The advantage of sender-based payload logging is that the local copy can be made
in parallel with the network transfer, trying to minimize the impact on a failure-free
execution. Its main drawback is its usage of node memory. The amount of message
payload log is a function of the message throughput of the application, and memory
can be exhausted quickly, so, a sender-based payload logging protocol must feature
mechanisms for control flow and garbage collection.

To understand how the garbage collection mechanism works, one needs to under-
stand first that the sender-based payload log belongs to the state of the sender process:
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at any point, a receiver process may request to send back the content of previously
sent messages. If the sender process was subject to a failure, and restarted somewhere
in its past, it still may need to provide the payload of messages that were sent even
further back in its history. Hence, when taking independent checkpoints, the message
payload log must be included in the process checkpoint, as any other element of the
process state.

Checkpoints, however, provide a guarantee to senders: when a receiver check-
points, all the processes that sent it messages have the guarantee that the payload of
messages delivered before that checkpoint will never be requested again. They can
thus be removed from the state of the process, creating a trade-off between processes:
taking a checkpoint of a process will relieve memory of processes that sent messages
to it, while imposing to save all the data sent by it. In the worst case, memory can
become exhausted, and remote checkpoints of sender processes must be triggered
before more messages can be sent and logged by processes.

Event Logging. The last element of a Message Logging strategy has probably been
the most studied: how to log the events. As described above, to replay its execution,
a process needs to collect the history of all events between the restore point and
the last nondeterministic event that happened during the initial execution. Since the
memory of the process is lost when it is hit by a failure, this history must be saved
somewhere. There are three main strategies to save the events log, called optimistic,
pessimistic, and causal.

Optimistic message logging consists in sending the history to a remote event
logger. That event logger must be a reliable process, either by assumption (the risk
that the failure hits that specific process is inversely proportional to the number
of processes in the system), or through replication. The protocol is said optimistic
because while event logs are in transfer between the receiver process (that completed
the event identifier when it delivered the message to the application) and the event
logger, the application may send messages, and be subject to a failure.

If a failure hits the application precisely at this time, the event log might be lost.
However, themessage thatwas just sent by the applicationmight be correctly received
and delivered anyway. That message, its content, its existence, might depend on the
reception whose log was lost. During a replay, the process will not find the event log,
and if that reception was nondeterministic, might make a different choice, sending
out a message (or doing another action), inconsistent with the rest of the application
state.

The natural extension to optimistic message logging is pessimistic message
logging: when a process does a nondeterministic action (like a reception), it sends
the event log to the event logger, and waits for an acknowledge of logging from the
event logger before it is allowed to take any action that may impact the state of the
application. This removes the race condition found in optimistic message logging
protocols, to the cost of introducing delays in the failure-free execution, as the latency
of logging safely the event and waiting for the acknowledge must be added to every
nondeterministic event.
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To mitigate this issue, causal event logging protocols were designed: in a causal
event logging protocol, messages carry part of the history of events that lead to their
emission. When a process does a nondeterministic action, it sends the event log
to the event logger, appends it to a local history slice, and without waiting for an
acknowledge, continues its execution. If an acknowledge comes before any message
is sent, that event log is removed from the local history slice. If the process sends a
message, however, the local history slice is piggybacked to the outgoing message.
That way, at least the receiving process knows of the events that may not be logged
and that lead to the emission of this message.

The history slice coming with a message must be added to the history slice of
a receiver process, since it is part of the history to bring the receiving process in
its current state. This leads to a snowballing effect, where the local history slice of
processes grows with messages, and the overhead on messages also grows with time.
Multiple strategies have been devised to bound that increase, by garbage collecting
events that are safely logged in the event logger from all history slices, and by
detecting cycles in causality to trim redundant information from these slices.

Uncoordinated Checkpointing withMessage Logging andReplay. Putting all the
pieces together, all uncoordinated checkpointing with message logging and replay
protocols behave similarly: processes log nondeterministic events andmessages pay-
load as they proceed along the initial execution; without strong coordination, they
checkpoint their state independently; in case of failure, the failed process restarts
from its last checkpoint, it collects all its log history, and enters the replay mode.
Replay consists in following the log history, enforcing all nondeterministic events
to produce the same effect they had during the initial execution. Message payload
must be re-provided to this process for this purpose. If multiple failures happen, the
multiple replaying processes may have to reproduce the messages to provide the
payload for other replaying processes, but since they follow the path determined
by the log history, these messages, and their contents, will be regenerated as any
deterministic action. Once the history has been entirely replayed, by the piecewise
deterministic assumption, the process reaches a state that is compatible with the state
of the distributed application, that can continue its progress from this point on.

1.2.4 Hierarchical Checkpointing

Over modern architectures, that feature many cores on the same computing node,
message logging becomes an unpractical solution. Indeed, any interaction between
two threads introduces the potential for a nondeterministic event that must be logged.
Shared memory also provides an efficient way to implement zero copy communica-
tion, and logging the payload of such “messages” introduces a high overhead that
make this solution intractable.

In fact, if a thread fails, current operating systems will abort the entire process.
If the computing node is subject to a hardware failure, all processes running on that
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machine fail together. Failures are then often tightly correlated, forcing all processes
/ threads running on that node to restart together because they crashed together. These
two observations lead to the development of Hierarchical Checkpointing Protocols.
Hierarchical Checkpointing tries to combine coordinated checkpoint and rollback
together with uncoordinated checkpointing with message logging, keeping the best
of both approaches.

The idea of Hierarchical Checkpointing is rather simple: processes are distrib-
uted in groups; processes belonging to the same group coordinate their checkpoints
and rollbacks; uncoordinated checkpointing with message logging is used between
groups. However, the state of a single process depends upon the interactions between
groups, but also upon the interactions with other processes inside the group. Coor-
dinated rollback guarantees that the application restarts in a consistent state; it does
not guarantee that the application, if restarting from that consistent state, will reach
the same state as in the initial execution, which is a condition for uncoordinated
checkpointing to work. A nondeterministic group (a group of processes whose state
depend upon the reception order of messages exchanged inside the group for exam-
ple) cannot simply restart from the last group-coordinated checkpoint and hope that
it will maintain its state globally consistent with the rest of the application.

Thus, Hierarchical Checkpointing Protocols remain uncoordinated checkpointing
protocols with message logging: nondeterministic interactions between processes of
the same group must be saved, but the message payload can be spared, because all
processes of that group will restart and regenerate the missing message payloads, if
a failure happens. Section3.6 presents in deeper details how a specific hierarchical
protocol works. In this overview, we introduce a general description of hierarchical
protocols to allow for a model-based comparison of the different approaches.

Reducing the logging. There are many reasons to reduce the logging (events and
payload): intragroup interactions are numerous, and treating all of them as nondeter-
ministic introduces significant computing slowdown if using a pessimistic protocol,
or memory consumption and message slowdown if using a causal protocol; inter-
group interactions are less sensitive to event logging, but payload logging augments
the checkpoint size, and consumes user memory.

Over the years, many works have proposed to integrate more application knowl-
edge in the fault-tolerant middleware: few HPC applications use message ordering
or timing information to take decisions; many receptions inMPI are in fact determin-
istic, since the source, tag, type and size, and the assumption of ordered transmission
in the virtual channel make the matching of messages unique from the application
level. In all these cases, logging can be avoided entirely. For other applications,
although the reception is nondeterministic, the ordering of receptions will temporar-
ily influence the state of the receiving process, but not its emissions. For example,
this happens in a reduce operation written over point to point communications: if a
node in the reduction receives first from its left child then from its right one, or in
the other order, the state of the process after two receptions stays the same, and the
message it sends up to its parent is always the same. Based on this observation, the
concept of send determinism has been introduced [36], in which many events may
be avoided to log.



18 J. Dongarra et al.

MPI provides also a large set of collective operations. Treating these operations
at the point-to-point level introduces a lot of nondeterminism, while the high-level
operation itself remains deterministic. This fact is used in [14] to reduce the amount
of events log.

HierarchicalCheckpointing reduces the need for coordination, allowing a loadbal-
ancing policy to store the checkpoints; size of the checkpoints, however are dependent
on the application message throughput and checkpointing policy (if using sender-
based payload logging, as inmost cases); the speed of replay, the overhead of logging
the events (in message size or in latency) are other critical parameters to decide when
a checkpoint must done.

In the following section, we discuss how the different checkpointing protocols can
be optimized by carefully selecting the interval between checkpoints. To implement
this optimization, it is first necessary to provide a model of performance for these
protocols.

1.3 Probabilistic Models for Checkpointing

This section deals with probabilistic models to assess the performance of various
checkpointing protocols. We start with the simplest scenario, with a single resource,
in Sect. 1.3.1, and we show how to compute the optimal checkpointing period.
Section1.3.2 shows that dealing with a single resource and dealing with coordi-
nated checkpointing on a parallel platform are similar problems, provided that we
can compute the MTBF of the platform from that of its individual components.
Section1.3.3 deals with hierarchical checkpointing. Things get more complicated,
because many parameters must be introduced in the model to account for this com-
plex checkpointing protocol. Finally, Sect. 1.3.4 provides a model for in-memory
checkpointing, a variant of coordinated checkpointing where checkpoints are kept
in the memory of other processors rather than on stable storage, in order to reduce
the cost of checkpointing.

1.3.1 Checkpointing with a Single Resource

We state the problem formally as follows. Let Timebase be the base time of the
application, without any overhead (neither checkpoints nor faults). Assume that the
resource is subject to faults with MTBF µ. Note that we deal with arbitrary failure
distributions here, and only assume knowledge of the MTBF.

The time to take a checkpoint is C seconds (the time to upload the checkpoint
file onto stable storage). We say that the checkpointing period is T seconds when a
checkpoint is done each time the application has completed T −C seconds of work.
When a fault occurs, the time between the last checkpoint and the fault is lost. This
includes useful work as well as potential fault tolerance techniques. After the fault,
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Time

fault

period Tlost

p C T -C C T -C C T -C C D R T -C C . . .

Fig. 1.5 An execution

there is a downtime of D seconds to account for the temporary unavailability of the
resource (for example rebooting, or migrating to a spare). Finally, in order to be able
to resume the work, the content of the last checkpoint needs to be recovered which
takes a time of R seconds (e.g., the checkpoint file is read from stable storage). The
sum of the time lost after the fault, of the downtime and of the recovery time is
denoted Tlost. All these notations are depicted in Fig. 1.5.

To avoid introducing several conversion parameters, all model parameters are
expressed in seconds. The failure inter-arrival times, the duration of a downtime,
checkpoint, or recovery are all expressed in seconds. Furthermore, we assume
(without loss of generality) that one work unit is executed in one second. One work-
unit may correspond to any relevant application-specific quantity.

The difficulty of the problem is to trade-off between the time spent checkpointing,
and the time lost in case of a fault. Let Timefinal(T ) be the expectation of the total
execution time of an application of size Timebase with a checkpointing period of
size T . The optimization problem is to find the period T minimizing Timefinal(T ).
However, for the sake of convenience, we rather aim at minimizing

Waste(T ) = Timefinal(T ) − Timebase
Timefinal(T )

.

This objective is called the waste because it corresponds to the fraction of the exe-
cution time that does not contribute to the progress of the application (the time
wasted). Of course minimizing the ratioWaste is equivalent to minimizing the total
time Timefinal, because we have

(1 − Waste(T )) Timefinal(T ) = Timebase,

but using the waste is more convenient. The waste varies between 0 and 1. When
the waste is close to 0, it means that Timefinal(T ) is very close to Timebase (which
is good), whereas, if the waste is close to 1, it means that Timefinal(T ) is very large
compared to Timebase (which is bad). There are two sources of waste, which we
analyze below.

First source ofwaste. Consider a fault-free execution of the applicationwith periodic
checkpointing. By definition, during each period of length T we take a checkpoint,
which lasts for C time units, and only T −C units of work are executed. Let TimeFF
be the execution time of the application in this setting. The fault-free execution time
TimeFF is equal to the time needed to execute the whole application, Timebase, plus
the time taken by the checkpoints:
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TimeFF = Timebase + NckptC,

where Nckpt is the number of checkpoints taken. Additionally, we have

Nckpt =
⌈
Timebase
T − C

⌉
≈ Timebase

T − C
.

To discard the ceiling function, we assume that the execution time Timebase is large
with respect to the period or, equivalently, that there are many periods during the
execution. Plugging back the (approximated) value Nckpt = Timebase

T−C , we derive that

TimeFF = T
T − C

Timebase. (1.2)

Similar to the Waste, we define WasteFF, the waste due to checkpointing in
a fault-free execution, as the fraction of the fault-free execution time that does not
contribute to the progress of the application:

WasteFF = TimeFF − Timebase
TimeFF

⇔
(
1 − WasteFF

)
TimeFF = Timebase. (1.3)

Combining Eqs. (1.2) and (1.3), we get:

WasteFF = C
T
. (1.4)

This result is quite intuitive: every T seconds, we waste C for checkpointing. This
calls for a very large period in a fault-free execution (even an infinite period, meaning
no checkpoint at all). However, a large period also implies that a large amount of
work is lost whenever a fault strikes, as we discuss now.

Second source of waste. Consider the entire execution (with faults) of the appli-
cation. Let Timefinal denote the expected execution time of the application in the
presence of faults. This execution time can be divided into two parts: (i) the execu-
tion of chunks of work of size T −C followed by their checkpoint; and (ii) the time
lost due to the faults. This decomposition is illustrated in Fig. 1.6. The first part of
the execution time is equal to TimeFF. Let Nfaults be the number of faults occurring
during the execution, and let Tlost be the average time lost per fault. Then,

Timefinal = TimeFF + NfaultsTlost. (1.5)

In average, during a time Timefinal, Nfaults = Timefinal
µ faults happen (recall

Eq. (1.1)). We need to estimate Tlost. A natural estimation for the moment when
the fault strikes in the period is T

2 (see Fig. 1.5). Intuitively, faults strike anywhere
in the period, hence in average they strike in the middle of the period. The proof of
this result for Exponential distribution laws can be found in [25]. We conclude that
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TIMEFF =TIMEFinal (1-WASTEFail) TIMEFinal WASTEFail

TIMEFinal

T -C C T -C C T -C C T -C C T -C C

T -C C T -C C T -C C T -C C T -C C

Fig. 1.6 An execution (top), and its reordering (bottom), to illustrate both sources of waste. Black-
ened intervals correspond to time lost due to faults: downtime, recoveries, and re-execution of work
that has been lost

Tlost = T
2 +D+ R, because after each fault there is a downtime and a recovery. This

leads to:

Timefinal = TimeFF +
Timefinal

µ

(
D + R + T

2

)
.

LetWastefault be the fraction of the total execution time that is lost because of faults:

Wastefault =
Timefinal − TimeFF

Timefinal
⇔
(
1 − Wastefault

)
Timefinal = TimeFF

We derive:

Wastefault =
1
µ

(
D + R + T

2

)
. (1.6)

Equations (1.4) and (1.6) show that each source of waste calls for a different period:
a large period forWasteFF, as already discussed, but a small period forWastefault,
to decrease the amount of work to re-execute after each fault. Clearly, a trade-off is
to be found. Here is how. By definition we have

Waste = 1 − Timebase
Timefinal

= 1 − Timebase
TimeFF

TimeFF
Timefinal

= 1 − (1 − WasteFF)(1 − Wastefault).

Altogether, we derive the final result:

Waste = WasteFF +Wastefault − WasteFFWastefault (1.7)

= C
T

+
(
1 − C

T

)
1
µ

(
D + R + T

2

)
. (1.8)

The two sources of waste do not add up, but we have:

(1 − Waste) = (1 − WasteFF)(1 − Wastefault),
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just as for discount percentages in a sale: two successive 50% rebates do not make
the product free, but the final price reduction is the product of the two successive
ones.

We obtainWaste = u
T + v+wT , where u = C

(
1− D+R

µ

)
, v = D+R−C/2

µ , and

w = 1
2µ . It is easy to see that Waste is minimized for T =

√
u
w . The first-order

(FO) formula for the optimal period is thus:

TFO =
√
2(µ − (D + R))C . (1.9)

and the optimal waste is WasteFO = 2
√
uw+ v, therefore

WasteFO =
√
2C
µ

(
1 − D + R

µ

)
+ D + R − C/2

µ
. (1.10)

In 1974, Young [69] obtained a different formula, namely TFO = √
2µC +

C . Thirty years later, Daly [25] refined Young’s formula and obtained TFO =√
2(µ+ R)C + C . Equation (1.9) is yet another variant of the formula, which we

have obtained through the computation of the waste. There is no mystery, though.
None of the three formulas is correct! They represent different first-order approxi-
mations, which collapse into the beautiful formula TFO = √

2µC when µ is large
in front of the resilience parameters D, C and R. Below, we show that this latter
condition is the key to the accuracy of the approximation.

First-order approximation of TFO. It is interesting to point out why the value of
TFO given by Eq. (1.9) is a first-order approximation, even for large jobs. Indeed,
there are several restrictions for the approach to be valid:

• We have stated that the expected number of faults during execution is Nfaults =
Timefinal

µ , and that the expected time lost due to a fault is Tlost = T
2 + D + R. Both

statements are true individually, but the expectation of a product is the product of
the expectations only if the random variables are independent, which is not the
case here because Timefinal depends upon the fault inter-arrival times.

• In Eq. (1.4), we have to enforce C ≤ T in order to have WasteFF ≤ 1.
• In Eq. (1.6), we have to enforce D + R ≤ µ in order to have Wastefault ≤ 1. In
addition, we must cap the period to enforce this latter constraint. Intuitively, we
need µ to be large enough for Eq. (1.6) to make sense (see the word of caution at
the end of Sect. 1.3.2.1).

• Equation (1.6) is accurate only when two or more faults do not take place within
the same period. Although unlikely when µ is large in front of T , the possible
occurrence of many faults during the same period cannot be eliminated.

To ensure that the condition of having at most a single fault per period is met with
a high probability, we cap the length of the period: we enforce the condition T ≤ ηµ,
where η is some tuning parameter chosen as follows. The number of faults during a
period of length T can be modeled as a Poisson process of parameter β = T

µ . The



1 Fault Tolerance Techniques for High-Performance Computing 23

probability of having k ≥ 0 faults is P(X = k) = βk

k! e
−β , where X is the random

variable showing the number of faults. Hence the probability of having two or more
faults is π = P(X ≥ 2) = 1− (P(X = 0)+ P(X = 1)) = 1− (1+ β)e−β . To get
π ≤ 0.03, we can choose η = 0.27, providing a valid approximation when bounding
the period range accordingly. Indeed, with such a conservative value for η, we have
overlapping faults for only 3% of the checkpointing segments in average, so that the
model is quite reliable. For consistency, we also enforce the same type of bound on
the checkpoint time, and on the downtime and recovery: C ≤ ηµ and D+ R ≤ ηµ.
However, enforcing these constraints may lead to use a suboptimal period: it may
well be the case that the optimal period

√
2(µ − (D + R))C of Eq. (1.9) does not

belong to the admissible interval [C, ηµ]. In that case, the waste is minimized for
one of the bounds of the admissible interval. This is because, as seen from Eq. (1.8),
the waste is a convex function of the period.

We conclude this discussion on a positive note. While capping the period, and
enforcing a lower bound on the MTBF, is mandatory for mathematical rigor, simula-
tions in [4] show that actual job executions can always use the value from Eq. (1.9),
accounting for multiple faults whenever they occur by re-executing the work until
success. The first-order model turns out to be surprisingly robust!

Let us formulate our main result as a theorem:

Theorem 1.1 The optimal checkpointing period is TFO = √
2µC + o(

√
µ) and the

corresponding waste is WasteFO =
√

2C
µ + o(

√
1
µ).

Theorem 1.1 has a wide range of applications. We discuss several of them in
the following sections. Before that, we explain how to compute the optimal period
accurately, in the special case where failures follow an Exponential distribution law.

Optimal value of TFO for Exponential distributions. There is a beautiful method to
compute the optimal value of TFO accurately when the failure distribution is Exp(λ).
First, we show how to compute the expected time E(Time(T − C,C, D, R, λ)) to
execute a work of duration T −C followed by a checkpoint of duration C , given the
values of C , D, and R, and a fault distribution Exp(λ). Recall that if a fault interrupts
a given trial before success, there is a downtime of duration D followed by a recovery
of length R. We assume that faults can strike during checkpoint and recovery, but
not during downtime.

Proposition 1.1

E(Time(T − C,C, D, R, λ)) = eλR
(
1
λ
+ D

)
(eλT − 1).

Proof For simplification, we write Time instead of Time(T −C,C, D, R, λ) in the
proof below. Consider the following two cases:
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(i) Either there is no fault during the execution of the period, then the time needed
is exactly T ;

(ii) Or there is one fault before successfully completing the period, then some addi-
tional delays are incurred.More specifically, as seen for thefirst order approxima-
tion, there are two sources of delays: the time spent computing by the processors
before the fault (accounted for by variable Tlost), and the time spent for downtime
and recovery (accounted for by variable Trec). Once a successful recovery has
been completed, there still remain T − C units of work to execute.

Thus Time obeys the following recursive equation:

Time =
{
T if there is no fault
Tlost + Trec + Time otherwise

(1.11)

Tlost denotes the amount of time spent by the processors before thefirst fault, knowing
that this fault occurs within the next T units of time. In other terms, it is the
time that is wasted because computation and checkpoint were not successfully
completed (the corresponding value in Fig. 1.5 is Tlost − D − R, because for
simplification Tlost and Trec are not distinguished in that figure).

Trec represents the amount of time needed by the system to recover from the fault
(the corresponding value in Fig. 1.5 is D + R).

The expectation of Time can be computed from Eq. (1.11) by weighting each case
by its probability to occur:

E(Time) = P (no fault) · T + P (a fault strikes) · E (Tlost + Trec + Time)

= e−λT T + (1 − e−λT ) (E(Tlost)+ E(Trec)+ E(Time)) ,

which simplifies into:

E(T ) = T + (eλT − 1) (E(Tlost)+ E(Trec)) (1.12)

We have E(Tlost) =
∫∞
0 xP(X = x |X < T )dx = 1

P(X<T )

∫ T
0 e−λxdx , and

P(X < T ) = 1 − e−λT . Integrating by parts, we derive that

E(Tlost) =
1
λ

− T
eλT − 1

(1.13)

Next, the reasoning to computeE(Trec), is very similar toE(Time) (note that there
can be no fault during D but there can be during R):

E(Trec) = e−λR(D + R)+ (1 − e−λR)(D + E(Rlost )+ E(Trec))

Here, Rlost is the amount of time lost to executing the recovery before a fault happens,
knowing that this fault occurs within the next R units of time. Replacing T by R in
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Eq. (1.13), we obtain E(Rlost ) = 1
λ − R

eλR−1 . The expression for E(Trec) simplifies to

E(Trec) = DeλR + 1
λ
(eλR − 1)

Plugging the values of E(Tlost) and E(Trec) into Eq. (1.12) leads to the desired
value:

E(Time(T − C,C, D, R, λ)) = eλR
(
1
λ
+ D

)
(eλT − 1)

Proposition 1.1 is the key to proving that the optimal checkpointing strategy (with
an Exponential distribution of faults) is periodic. Indeed, consider an application of
duration Timebase, and divide the execution into periods of different lengths Ti , each
with a checkpoint at the end. The expectation of the total execution time is the sum
of the expectations of the time needed for each period. Proposition 1.1 shows that
the expected time for a period is a convex function of its length, hence all periods
must be equal and Ti = T for all i .

There remains to find the best number of periods, or equivalently, the size of
each work chunk before checkpointing. With k periods of length T = Timebase

k ,
we have to minimize a function that depends on k. Assuming k rational, one can
find the optimal value kopt by differentiation (and prove uniqueness using another
differentiation). Unfortunately, we have to use the (implicit) Lambert function L,
defined as L(z)eL(z) = z), to express the value of kopt , but we can always compute
this value numerically. In the end, the optimal number of periods is either ⌊kopt⌋
or ⌈kopt⌉, thereby determining the optimal period Topt. As a sanity check, the first-
order term in the Taylor expansion of Topt is indeed TFO, which is kind of comforting.
See [12] for all details.

1.3.2 Coordinated Checkpointing

In this section we introduce a simple model for coordinated checkpointing. Con-
sider an application executing on a parallel platform with N processors, and using
coordinated checkpointing for resilience. What is the optimal checkpointing period?
We show how to reduce the optimization problem with N processors to the pre-
vious problem with only one processor. Most high performance applications are
tightly-coupled applications, where each processor is frequently sending messages
to, and receiving messages from the other processors. This implies that the execution
can progress only when all processors are up and running. When using coordinated
checkpointing, this also implies that when a fault strikes one processor, the whole
application must be restarted from the last checkpoint. Indeed, even though the other
processors are still alive, they will very soon need some information from the faulty
processor. But to catch up, the faulty processor must re-execute the work that it has
lost, during which it had received messages from the other processors. But these
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Fig. 1.7 Behavior for a tightly coupled application with coordinated checkpointing

messages are no longer available. This is why all processors have to recover from the
last checkpoint and re-execute the work in parallel. On the contrary, with hierarchical
checkpointing, only the group of the faulty processor must recover and re-execute
(see Sect. 1.3.3 for a model of this complicated protocol).

Figure1.7 provides an illustration of coordinated checkpointing. Each time a fault
strikes somewhere on the platform, the application stops, all processors perform a
downtime and a recovery, and they re-execute the work during a time Tlost. This is
exactly the same pattern as with a single resource.We can see the whole platform as a
single super-processor, very powerful (its speed is N times that of individual proces-
sors) but also very prone to faults: all the faults strike this super-processor! We can
apply Theorem 1.1 to the super-processor and determine the optimal checkpointing
period as TFO = √

2µC+o(
√
µ), whereµ now is theMTBF of the super-processor.

How can we compute this MTBF? The answer is given in the next section.

1.3.2.1 Platform MTBF

With Fig. 1.8, we see that the super-processor is hit by faults N timesmore frequently
than the individual processors. We should then conclude that its MTBF is N times
smaller than that of each processor. We state this result formally:

Proposition 1.2 Consider a platform with N identical processors, each with MTBF
µind. Let µ be the MTBF of the platform. Then

µ = µind

N
(1.14)

Time

Time

p1

p2

p3

t

p

t

(a)

(b)

Fig. 1.8 Intuition of the proof of Proposition 1.2. a If three processors have around 20 faults during
a time t (µind = t

20 )... b...during the same time, the equivalent processor has around 60 faults
(µ = t

60 )
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Proof We first prove the proposition when the inter-arrival times of the faults on
each individual processor are I.I.D. random variables with distributionExp(λ), where
λ = 1

µind
. Recall that I.I.D. means Independent and Identically Distributed. In that

simple case, the inter-arrival times of the faults on the super-processor are I.I.D.
randomvariableswith distributionExp(Nλ),whichproves that itsMTBF isµ = µind

N .
To see this, the reasoning is the following:

• The arrival time of the first fault on the super-processor is a random variable
Y1 ∼ Exp(λ). This is because Y1 is the minimum of X (1)

1 , X (2)
1 …, X (N )

1 , where
X (i)
1 is the arrival time of the first fault on processor Pi . But X

(i)
1 ∼ Exp(λ) for all

i , and the minimum of N random variables following an Exponential distribution
Exp(λi ) is a random variable following an Exponential distribution Exp(

∑N
i=1 λi )

(see [64, p. 288]).
• Thememoryless property of Exponential distributions is the key to the result for the
delay between the first and second fault on the super-processor. Knowing that first
fault occurred on processor P1 at time t , what is the distribution of random variable
for the occurrence of the first fault on processor P2? The only new information
if that P2 has been alive for t seconds. The memoryless property states that the
distribution of the arrival time of the first fault on P2 is not changed at all when
given this information! It is still an exponential distribution Exp(λ). Of course
this holds true not only for P2, but for each processor. And we can use the same
minimum trick as for the first fault.

• Finally, the reasoning is the same for the third fault, and so on.

This concludes the proof for exponential distributions.
We now give another proof of Proposition 1.2 that applies to any continuous prob-

ability distribution with bounded (nonzero) expectation, not just Exponential laws.
Consider a single processor, say processor Pq . Let Xi , i ≥ 0 denote the I.I.D. random
variables for the fault inter-arrival times on Pq , and assume that Xi ∼ DX , where DX
is a continuous probability distribution with bounded (nonzero) expectation µind. In
particular, E (Xi ) = µind for all i . Consider a fixed time bound F . Let nq(F) be the
number of faults on Pq until time F . More precisely, the (nq(F) − 1)-th fault is the
last one to happen strictly before time F , and the nq(F)-th fault is the first to happen
at time F or after. By definition of nq(F), we have

nq (F)−1∑

i=1

Xi ≤ F ≤
nq (F)∑

i=1

Xi .

Using Wald’s equation [64, p. 420], with nq(F) as a stopping criterion, we derive:

(E
(
nq(F)

)
− 1)µind ≤ F ≤ E

(
nq(F)

)
µind,

and we obtain:

lim
F→+∞

E
(
nq(F)

)

F
= 1

µind
. (1.15)
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Now consider a platform with N identical processors, whose fault inter-arrival
times are I.I.D. random variables that follow the distribution DX . Unfortunately,
if DX is not an Exponential law, then the inter-arrival times of the faults of the
whole platform, i.e., of the super-processor introduced above, are no longer I.I.D.
The minimum trick used in the proof of Proposition 1.2 works only for the first
fault. For the following ones, we need to remember the history of the previous faults,
and things get too complicated. However, we could still define the MTBF µ of the
super-processor using Eq. (1.15): this value µ must satisfy

lim
F→+∞

E (n(F))
F

= 1
µ
,

where n(F) be the number of faults on the super-processor until time F . But does
the limit always exist? and if yes, what is its value?

The answer to both questions is not difficult. Let Yi , i ≥ 1 denote the random
variables for fault inter-arrival times on the super-processor. Consider a fixed time
bound F as before. Let n(F) be the number of faults on the whole platform until
time F , and letmq(F) be the number of these faults that strike component number q.
Of course we have n(F) = ∑N

q=1mq(F). By definition, except for the component
hit by the last fault, mq(F) + 1 is the number of faults on component q until time
F is exceeded, hence nq(F) = mq(F) + 1 (and this number is mq(F) = nq(F)
on the component hit by the last fault). From Eq. (1.15) again, we have for each
component q:

lim
F→+∞

E
(
mq(F)

)

F
= 1

µind
.

Since n(F) =∑N
q=1mq(F), we also have:

lim
F→+∞

E (n(F))
F

= N
µind

which answers both questions at the same time and concludes the proof.
Note that the random variables Yi are not I.I.D., and they do not necessarily have

the same expectation, which explains why we resort to Eq. (1.15) to define theMTBF
of the super-processor. Another possible asymptotic definition of the MTBFµ of the
platform could be given by the equation

µ = lim
n→+∞

∑n
i=1 E (Yi )

n
.

Kella and Stadje (Theorem 4, [49]) prove that this limit indeed exists and that is
also equal to µind

N , if in addition the distribution function of the Xi is continuous (a
requirement always met in practice).
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Proposition 1.2 shows that scale is the enemy of fault tolerance. If we double
up the number of components in the platform, we divide the MTBF by 2, and the
minimum waste automatically increases by a factor

√
2 ≈ 1.4 (see Eq. (1.10)).

And this assumes that the checkpoint time C remains constant. With twice as many
processors, there is twicemore data to write onto stable storage, hence the aggregated
I/O bandwidth of the platform must be doubled to match this requirement.

We conclude this section with a word of caution: the formula µ = µind
N expresses

the fact that the MTBF of a parallel platform will inexorably decrease as the number
of its components increases, regardless how reliable each individual component could
be. Mathematically, the expression of the waste in Eq. (1.8) is a valid approximation
only if µ is large in front of the other resilience parameters. This will obviously be
no longer true when the number of resources gets beyond some threshold.

1.3.2.2 Execution Time for a Parallel Application

In this section, we explain how to use Proposition 1.2 to compute the expected
execution time of a parallel application using N processors. We consider the follow-
ing relevant scenarios for checkpoint/recovery overheads and for parallel execution
times.

Checkpoint/recovery overheads—With coordinated checkpointing, checkpoints
are synchronized over all processors. We use C(N ) and R(N ) to denote the time
for saving a checkpoint and for recovering from a checkpoint on N processors,
respectively (we assume that the downtime D does not depend on N ). Assume that
the application’smemory footprint isMem, and bio represents the available I/O band-
width. bytes, with each processor holding Mem

N bytes. We envision two scenarios:

• Proportional overhead: C(N ) = R(N ) = Mem
Nbio

. This is representative of cases
in which the bandwidth of the network card/link at each processor is the I/O
bottleneck. In such cases, processors checkpoint their data in parallel.

• Constant overhead: C(N ) = R(N ) = Mem
bio

, which is representative of cases in
which the bandwidth to/from the resilient storage system is the I/O bottleneck. In
such cases, processors checkpoint their data in sequence.

Parallel work—Let W (N ) be the time required for a failure-free execution on N
processors. We use three models:

• Embarrassingly parallel jobs: W (N ) = W/N . Here W represents the sequential
execution time of the application.

• Generic parallel jobs: W (N ) = W/N + γW . As in Amdahl’s law [1], γ < 1 is
the fraction of the work that is inherently sequential.

• Numerical kernels: W (N ) = W/N + γW 2/3/
√
N . This is representative of a

matrix product (or LU/QR factorization) of size n on a 2D-processor grid, where
W = O(n3). In the algorithm in [7], N = p2 and each processor receives 2p
matrix blocks of size n/p. Here γ is the communication-to-computation ratio of
the platform.
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We assume that the parallel job is tightly coupled, meaning that all N processors
operate synchronously throughout the job execution. These processors execute the
same amount of work W (N ) in parallel, period by period. Inter-processor messages
are exchanged throughout the computation, which can only progress if all processors
are available. When a failure strikes a processor, the application is missing one
resource for a certain period of time of length D, the downtime. Then the application
recovers from the last checkpoint (recovery timeof length R(N )) before it re-executes
the work done since that checkpoint and up to the failure. Therefore, we can compute
the optimal period and the optimal waste Waste as in Theorem 1.1 with µ = µind

N
and C = C(N ). The (expected) parallel execution time is Time[final] = Timebase

1−Waste ,
where Timebase = W (N ).

Altogether, we have designed a variety of scenarios, some more optimistic than
others, to model the performance of a parallel tightly-coupled application with coor-
dinated checkpointing. We point out that many scientific applications are tightly-
coupled, such as iterative applications with a global synchronization point at the end
of each iteration. However, the fact that inter-processor information is exchanged
continuously or at given synchronization steps (as in BSP-like models) is irrelevant:
in steady-state mode, all processors must be available concurrently for the execution
to actually progress.While the tightly-coupled assumptionmay seem very constrain-
ing, it captures the fact that processes in the application depend on each other and
exchange messages at a rate exceeding the periodicity of checkpoints, preventing
independent progress.

1.3.3 Hierarchical Checkpointing

As discussed in Sect. 1.2.4, and presented in deeper details in Sect.3.6 later in this
book, hierarchical checkpointing algorithms are capable of partial coordination of
checkpoints to decrease the cost of logging, while retaining message logging capa-
bilities to remove the need for a global restart. These hierarchical schemes parti-
tion the application processes in groups. Each group checkpoints independently,
but processes belonging to the same group coordinate their checkpoints and recov-
ery. Communications between groups continue to incur payload logging. However,
because processes belonging to a same group follow a coordinated checkpointing
protocol, the payload of messages exchanged between processes within the same
group is not required to be logged.

The optimizations driving the choice of the size and shape of groups are varied.
A simple heuristic is to checkpoint as many processes as possible, simultaneously,
without exceeding the capacity of the I/O system. In this case, groups do not check-
point in parallel. Groups can also be formed according to hardware proximity or
communication patterns. In such approaches, there may be opportunity for several
groups to checkpoint concurrently.

The design and analysis of a refinedmodel for hierarchical checkpointing requires
to introduce many new parameters. First, we have to account for non-blocking
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checkpointing, i.e., the possibility to continue execution (albeit at a reduced rate)
while checkpointing. Then message logging has three consequences, two negative
and one positive:

• performance degradation in a fault-free execution (negative effect)
• re-execution speed-up after a failure (positive effect)
• checkpoint size increase to store logged messages (negative effect)

The last item is the most important, because intergroup messages may rapidly
increase the total size of the checkpoint as the execution progresses, thereby imposing
to cap the length of the checkpointing period (see Sect. 1.2.4). The model proposed
in this section captures all these additional parameters for a variety of platforms
and applications, and provides formulas to compute (and compare) the waste of
each checkpointing protocol and application/platform scenario. However, the curious
reader must be advised that derivation of the waste becomes much more complicated
than in Sects. 1.3.1 and 1.3.2.

1.3.3.1 Instantiating the Model

In this section, we detail the main parameters of the model. We consider a tightly-
coupled application that executes on N processors. As before, all model parameters
are expressed in seconds. However, in the previous models, one work unit was exe-
cuted in one second, because we assumed that processors were always computing
at full rate. However, with hierarchical checkpointing, when a processor is slowed-
down by another activity related to fault tolerance (writing checkpoints to stable
storage, logging messages, etc.), one work-unit takes longer than a second to com-
plete. Also, recall that after the striking of a failure under a hierarchical scenario, the
useful work resumes only when the faulty group catches up with the overall state of
the application at failure time.

Blocking or non-blocking checkpoint. There are various scenarios to model the
cost of checkpointing in hierarchical checkpointing protocols, so we use a flexible
model, with several parameters to specify. The first question is whether checkpoints
are blocking or not. On some architectures, we may have to stop executing the
application before writing to the stable storage where the checkpoint data is saved;
in that case checkpoint is fully blocking. On other architectures, checkpoint data
can be saved on the fly into a local memory before the checkpoint is sent to the
stable storage, while computation can resume progress; in that case, checkpoints can
be fully overlapped with computations. To deal with all situations, we introduce a
slow-down factor α: during a checkpoint of duration C , the work that is performed
is αC work units, instead of C work-units if only computation takes place. In other
words, (1 − α)C work-units are wasted due to checkpoint jitters perturbing the
progress of computation. Here, 0 ≤ α ≤ 1 is an arbitrary parameter. The case α = 0
corresponds to a fully blocking checkpoint, while α = 1 corresponds to a fully
overlapped checkpoint, and all intermediate situations can be represented. Note that
we have resorted to fully blocking models in Sects. 1.3.1 and 1.3.2.
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Periodic checkpointing strategies. Just as before, we focus on periodic scheduling
strategies where checkpoints are taken at regular intervals, after some fixed amount
of work-units have been performed. The execution is partitioned into periods of
duration T = W +C , whereW is the amount of time where only computations take
place, while C corresponds to the amount of time where checkpoints are taken. If
not slowed down for other reasons by the fault-tolerant protocol (see Sect. 1.3.3.4),
the total amount of work units that are executed during a period of length T is thus
Work = W + αC (recall that there is a slow-down due to the overlap).

The equations that define the waste are the same as in Sect. 1.3.1. We reproduce
them below for convenience:

(1 − WasteFF)TimeFF = Timebase
(1 − Wastefail)Timefinal = TimeFF
Waste = 1 − (1 − WasteFF)(1 − Wastefail)

(1.16)

We derive easily that

WasteFF = T − Work
T

= (1 − α)C
T

(1.17)

As expected, if α = 1 there is no overhead, but if α < 1 (actual slowdown, or
even blocking if α = 0), we retrieve a fault-free overhead similar to that of coordi-
nated checkpointing. For the time being, we do not further quantify the length of a
checkpoint, which is a function of several parameters. Instead, we proceed with the
abstract model. We envision several scenarios in Sect. 1.3.3.5, only after setting up
the formula for the waste in a general context.

Processor groups. As mentioned above, we assume that the platform is partitioned
into G groups of the same size. Each group contains q processors, hence N = Gq.
When G = 1, we speak of a coordinated scenario, and we simply write C , D and R
for the duration of a checkpoint, downtime and recovery. When G ≥ 1, we speak of
a hierarchical scenario. Each group of q processors checkpoints independently and
sequentially in time C(q). Similarly, we use D(q) and R(q) for the duration of the
downtime and recovery. Of course, if we setG = 1 in the (more general) hierarchical
scenario, we retrieve the value of the waste for the coordinated scenario. As already
mentioned, we derive a general expression for the waste for both scenarios, before
further specifying the values of C(q), D(q), and R(q) as a function of q and the
various architectural parameters under study.

1.3.3.2 Waste for the Coordinated Scenario (G = 1)

The goal of this section is to quantify the expected waste in the coordinated scenario
where G = 1. Recall that we write C , D, and R for the checkpoint, downtime, and
recovery using a single group of N processors. The platform MTBF is µ. We obtain
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Fig. 1.9 Coordinated checkpoint: illustrating the waste when a failure occurs. a during the work
phase; and b during the checkpoint phase

the following equation for the waste, which we explain briefly below and illustrate
with Fig. 1.9:

WasteFF = (1 − α)C
T

(1.18)

Wastefail =
1
µ

(
R + D+

T − C
T

[
αC + T − C

2

]

+C
T

[
αC + T − C + C

2

])
(1.19)

• Equation (1.18) is the portion of the execution lost in checkpointing, even during
a fault-free execution, see Eq. (1.17).

• The second part of Eq. (1.19) is the overhead of the execution time due to a failure
during work interval T − C (see Fig. 1.9a).

• The last part of Eq. (1.19) is the overhead due to a failure during a checkpoint (see
Fig. 1.9b).

After simplification of Eqs. (1.18) and (1.19), we get:

Wastefail =
1
µ

(
D + R + T

2
+ αC

)
(1.20)
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Plugging this value back into Eq. (1.16) leads to:

Wastecoord = 1 −
(
1 − (1 − α)C

T

)(
1 − 1

µ

(
D + R + T

2
+ αC

))
(1.21)

The optimal checkpointing period Topt that minimizes the expected waste in
Eq. (1.21) is

Topt =
√
2(1 − α)(µ − (D + R + αC))C (1.22)

This value is in accordance with the first-order expression of TFO in Eq. (1.9) when
α = 0 and, by construction, must be greater than C . Of course, just as before, this
expression is valid only if all resilience parameters are small in front of µ.

1.3.3.3 Waste for the Hierarchical Scenario (G ≥ 1)

In this section, we compute the expected waste for the hierarchical scenario.We have
G groups of q processors, and we let C(q), D(q), and R(q) be the duration of the
checkpoint, downtime, and recovery for each group. We assume that the checkpoints
of the G groups take place in sequence within a period (see Fig. 1.10a). We start by
generalizing the formula obtained for the coordinated scenario before introducing
several new parameters to the model.

Generalizing previous scenario with G ≥ 1: We obtain the following intricate
formula for the waste, which we illustrate with Fig. 1.10 and the discussion below:

Wastehier = 1−
(
1− T − Work

T

)(
1− 1

µ

(
D(q)+R(q)+Re- Exec

))
(1.23)

Work = T − (1 − α)GC(q) (1.24)

Re- Exec =
T−GC(q)

T
1
G

G∑

g=1

[
(G−g+1)αC(q)+ T−GC(q)

2

]

+ GC(q)
T

1
G2

G∑

g=1

[

g−2∑

s=0

(G − g + s + 2)αC(q)+ T − GC(q)

+ GαC(q)+ T − GC(q)+ C(q)
2

+
G−g∑

s=1

(s + 1)αC(q)
]

(1.25)
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Fig. 1.10 Hierarchical checkpoint: illustrating the waste when a failure occurs. a during the work
phase (first part of Eq. (1.25)); and during the checkpoint phase (last three parts of Eq. (1.25)), with
three sub-cases: b before the checkpoint of the failing group (second part of Eq. (1.25)), c during
the checkpoint of the failing group (third part of Eq. (1.25)), or d after the checkpoint of the failing
group (last part of Eq. (1.25))
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• The first term in Eq. (1.23) represents the overhead due to checkpointing during
a fault-free execution (same reasoning as in Eq. (1.17)), and the second term the
overhead incurred in case of failure.

• Equation (1.24) provides the amount of work units executed within a period of
length T .

• The first part of Eq. (1.25) represents the time needed for re-executing the work
when the failure happens in a work-only area, i.e., during the first T − GC(q)
seconds of the period (see Fig. 1.10a).

• The second part of Eq. (1.25) deals with the case where the fault happens during a
checkpoint, i.e., during the last GC(q) seconds of the period (hence the first term
that represents the probability of this event).
We distinguish three cases, depending upon what group was checkpointing at the
time of the failure:

– The third part of Eq. (1.25) is for the case when the fault happens before the
checkpoint of group g (see Fig. 1.10b).

– The fourth part of Eq. (1.25) is for the case when the fault happens during the
checkpoint of group g (see Fig. 1.10c).

– The fifth part of Eq. (1.25) is the casewhen the fault happens after the checkpoint
of group g, during the checkpoint of group g + s, where g + 1 ≤ g + s ≤ G
(See Fig. 1.10d).

Of course this expression reduces to Eq. (1.21) when G = 1. Just as for the
coordinated scenario, we enforce the constraint

GC(q) ≤ T (1.26)

by construction of the periodic checkpointing policy.

1.3.3.4 Refining the Model

Wenow introduce three new parameters to refine themodel when the processors have
been partitioned into several groups. These parameters are related to the impact of
message logging on execution, re-execution, and checkpoint image size, respectively.

Impact of message logging on execution and re-execution. With several groups,
intergroup messages need to be stored in local memory as the execution progresses,
and event logs must be stored in reliable storage, so that the recovery of a given
group, after a failure, can be done independently of the other groups. This induces
an overhead, which we express as a slowdown of the execution rate: instead of
executing one work-unit per second, the application executes only λ work-units,
where 0 < λ < 1. Typical values for λ are said to be λ ≈ 0.98, meaning that the
overhead due to payload messages is only a small percentage [14, 36].

On the contrary, message logging has a positive effect on re-execution after a
failure, because intergroup messages are stored in memory and directly accessible
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after the recovery. Our model accounts for this by introducing a speedup factor ρ

during the re-execution. Typical values for ρ lie in the interval [1; 2], meaning that
re-execution time can be reduced by up to half for some applications [13].

Fortunately, the introduction of λ and ρ is not difficult to account for in the
expression of the expected waste: in Eq. (1.23), we replace Work by λWork and
Re- Exec by Re- Exec

ρ and obtain

Wastehier = 1−
(
1−T − λWork

T

)(
1− 1

µ

(
D(q)+R(q)+Re- Exec

ρ

))
(1.27)

where the values of Work and Re- Exec are unchanged, and given by Eqs. (1.24)
and (1.25) respectively.

Impact of message logging on checkpoint size. Message logging has an impact on
the execution and re-execution rates, but also on the size of the checkpoint. Because
intergroup messages are logged, the size of the checkpoint increases with the amount
of work per unit. Consider the hierarchical scenario with G groups of q processors.
Without message logging, the checkpoint time of each group isC0(q), and to account
for the increase in checkpoint size due to message logging, we write the equation

C(q) = C0(q)(1+ βλWork) ⇔ β = C(q) − C0(q)
C0(q)λWork

(1.28)

As before, λWork = λ(T − (1 − α)GC(q)) (see Eq. (1.24)) is the number of
work units, or application iterations, completed during the period of duration T , and
the parameter β quantifies the increase in the checkpoint image size per work unit,
as a proportion of the application footprint. Typical values of β are given in the
examples of Sect. 1.3.3.5. Combining with Eq. (1.28), we derive the value ofC(q) as

C(q) = C0(q)(1+ βλT )
1+ GC0(q)βλ(1 − α)

(1.29)

The constraint in Eq. (1.26), namely GC(q) ≤ T , now translates into
GC0(q)(1+βλT )

1+GC0(q)βλ(1−α) ≤ T , hence

GC0(q)βλα ≤ 1 and T ≥ GC0(q)
1 − GC0(q)βλα

(1.30)

1.3.3.5 Case Studies

In this section, we use the previous model to evaluate different case studies. We
propose three generic scenarios for the checkpoint protocols, and three application
examples with different values for the parameter β.
Checkpointing algorithm scenarios.
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Coord- IO —The first scenario considers a coordinated approach, where the dura-
tion of a checkpoint is the time needed for the N processors to write the memory
footprint of the application onto stable storage. Let Mem denote this memory, and
bio represents the available I/O bandwidth. Then

C = CMem = Mem
bio

(1.31)

(see the discussion on checkpoint/recovery overheads in Sect. 1.3.2.2 for a similar
scenario). In most cases we have equal write and read speed access to stable storage,
and we let R = C = CMem, but in some cases we could have different values. Recall
that a constant value D(q) = D is used for the downtime.

Hierarch- IO—The second scenario uses a number of relatively large groups. Typi-
cally, these groups are composed to take advantage of the application communication
pattern [32, 36]. For instance, if the application executes on a 2D-grid of processors,
a natural way to create processor groups is to have one group per row (or column)
of the grid. If all processors of a given row belong to the same group, horizontal
communications are intragroup communications and need not to be logged. Only
vertical communications are intergroup communications and need to be logged.

With large groups, there are enough processors within each group to saturate the
available I/O bandwidth, and the G groups checkpoint sequentially. Hence the total
checkpoint time without message logging, namely GC0(q), is equal to that of the
coordinated approach. This leads to the simple equation

C0(q) =
CMem

G
= Mem

Gbio
(1.32)

where Mem denotes the memory footprint of the application, and bio the available
I/O bandwidth. Similarly as before, we use R(q) for the recovery (either equal to
C(q) or not), and a constant value D(q) = D for the downtime.

Hierarch- Port —The third scenario investigates the possibility of having a large
number of very small groups, a strategy proposed to take advantage of hardware
proximity and failure probability correlations [15]. However, if groups are reduced
to a single processor, a single checkpointing group is not sufficient to saturate the
available I/O bandwidth. In this strategy, multiple groups of q processors are allowed
to checkpoint simultaneously in order to saturate the I/Obandwidth.Wedefine qmin as
the smallest value such that qminbport ≥ bio, where bport is the network bandwidth
of a single processor. In other words, qmin is the minimal size of groups so that
Eq. (1.32) holds.

Small groups typically imply logging more messages (hence a larger growth
factor of the checkpoint per work unit β, and possibly a larger impact on computation
slowdown λ). For an application executing on a 2D-grid of processors, twice as many
communications will be logged (assuming a symmetrical communication pattern
along each grid direction). However, let us compare recovery times in theHierarch-
Port and Hierarch- IO strategies; assume that R0(q) = C0(q) for simplicity. In
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both cases Eq. (1.32) holds, but the number of groups is significantly larger for
Hierarch- Port, thereby ensuring a much shorter recovery time.

Application examples: We study the increase in checkpoint size due to message
logging by detailing three application examples that are typical scientific applica-
tions executing on 2D-or 3D-processor grids, but this exhibits a different checkpoint
increase rate parameter β.

2D- Stencil–We first consider a 2D-stencil computation: a real matrix of size n×n
is partitioned across a p × p processor grid, where p2 = N . At each iteration, each
element is averaged with its 8 closest neighbors, requiring rows and columns that
lie at the boundary of the partition to be exchanged (it is easy to generalize to larger
update masks). Each processor holds a matrix block of size b = n/p, and sends four
messages of size b (one in each grid direction). Then each element is updated, at the
cost of 9 double floating-point operations. The (parallel) work for one iteration is
thus Work = 9b2

sp
, where sp is the speed of one processor.

HereMem = 8n2 (in bytes), since there is a single (double real)matrix to store. As
already mentioned, a natural (application-aware) group partition is with one group
per row (or column) of the grid, which leads to G = q = p. Such large groups
correspond to the Hierarch- IO scenario, with C0(q) = CMem

G . At each iteration,
vertical (intergroup) communications are logged, but horizontal (intragroup) com-
munications are not logged. The size of logged messages is thus 2pb = 2n for each
group. If we checkpoint after each iteration, C(q) − C0(q) = 2n

bio
, and we derive

from Eq. (1.28) that β = 2npsp
n29b2 = 2sp

9b3 . We stress that the value of β is unchanged
if groups checkpoint every k iterations, because both C(q) − C0(q) and Work are
multiplied by a factor k. Finally, if we use small groups of size qmin, we have the
Hierarch- Port scenario. We still have C0(q) = CMem

G , but now the value of β has
doubled since we log twice as many communications.

Matrix- Product—Consider now a typical linear-algebra kernel involving matrix
products. For eachmatrix-product, there are threematrices involved, soMem = 24n2

(in bytes). The matrix partition is similar to previous scenario, but now each proces-
sor holds three matrix blocks of size b = n/p. Consider Cannon’s algorithm [18]
which has p steps to compute a product. At each step, each processor shifts one
block vertically and one block horizontally, andWork = 2b3

sp
. In the Hierarch- IO

scenario with one group per grid row, only vertical messages are logged: β = sp
6b3 .

Again, β is unchanged if groups checkpoint every k steps, or every matrix product
(k = p). In the Coord- Port scenario with groups of size qmin, the value of β is
doubled.

3D- Stencil —This application is similar to 2D- Stencil, but with a 3D matrix of
size n partitioned across a 3D-grid of size p, where 8n3 = Mem and p3 = N . Each
processor holds a cube of size b = n/p. At each iteration, each pixel is averaged with
its 26 closest neighbors, andWork = 27b3

sp
. Each processor sends the six faces of its

cube, one in each direction. In addition toCoord- IO, there are now three hierarchical
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1
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Local checkpoint
done

Remote checkpoint
done

Period
done

Node p

Node p'

Fig. 1.11 Double checkpoint algorithm

scenarios: (A)Hierarch- IO- Planewhere groups are horizontal planes, of size p2.
Only vertical communications are logged, which represents two faces per processor:
β = 2sp

27b3 ; (B)Hierarch- IO- Linewhere groups are lines, of size p. Twice as many

communications are logged, which represents four faces per processor: β = 4sp
27b3 ;

(C) Hierarch- Port (groups of size qmin). All communications are logged, which
represents six faces per processor: β = 6sp

27b3 . The order of magnitude of b is the
cubic root of the memory per processor for 3D- Stencil, while it was its square root
for 2D- Stencil and Matrix- Product, so β will be larger for 3D- Stencil.

Wrap-up. We have shown how to instantiate all the resilience parameters of the
model. Now, to assess the performance of a given scenario for hierarchical check-
pointing, there only remain to instantiate the platform parameters: individual MTBF
µind, number of nodes N (from which we deduce the platform MTBF µ), number
of cores per node, speed of each core sp, memory per node, fraction of that memory
used for the application memory footprint Mem, I/O network and node bandwidths
bio and bport . Then we can use the model to predict the waste when varying the
number of groups and the assumptions on checkpoint time. The interested reader
will find several examples in [10].

1.3.4 In-Memory Checkpointing

In this section, we briefly survey a recent protocol that has been designed to reduce
the time needed to checkpoint an application. The approach to reduce checkpoint
time is to avoid using any kind of stable, but slow-to-access, storage. Rather than
using a remote disk system, in-memory checkpointing uses the main memory of the
processors. This will provide faster access and greater scalability, at the price of the
risk of a fatal failure in some (unlikely) scenarios.

Figure1.11 depicts the double checkpoint algorithm of [59, 71]. Processors are
arranged into pairs. Within a pair, checkpoints are replicated: each processor stores
its own checkpoint and that of its buddy in its local memory. We use the notations of
[59, 71] in Fig. 1.11, which shows the following:

• The execution is divided into periods of length P
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• At the beginning of the period, each node writes its own checkpoint in its local
memory, which takes a time δ. This writing is done in blocking mode, and the
execution is stopped.

• Then each node send its checkpoint to its buddy. This exchange takes a time θ . The
exchange is non-blocking, and the execution can progress, albeit with a slowdown
factor Φ

• During the rest of the period, for a time σ , the execution progresses at full (unit)
speed

The idea of the non-blocking exchange is to use those time-steps where the applica-
tion is not performing inter-processor communications to send/receive the checkpoint
files, thereby reducing the overhead incurred by the application.

Let us see what happens when a failure strikes one processor, as illustrated in
Fig. 1.12a.Node p is hit by a failure, and a spare nodewill take over. After a downtime
D, the spare node starts by recovering the checkpoint file of node p, in time R. The
spare receives this file from node p′, the buddy of node p, most likely as fast as
possible (in blocking mode) so that it can resume working. Then the spare receives
the checkpoint file of node p′, to ensure that the application is protected if a failure
hits p′ later on. As before, receiving the checkpoint file can be overlapped with
the execution and takes a time Θ , but there is a trade-off to make now: as shown in
Fig. 1.12b, the application is at risk until both checkpoint receptions are completed. If
a failure strikes p′ before that, then it is a critical failure that cannot be recovered from.
Hence it might be a good idea to receive the second checkpoint (that of p′) as fast
as possible too, at the price of a performance degradation of the whole application:
when one processor is blocked, the whole application cannot progress. A detailed

1
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Node p'
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1
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(b)

Fig. 1.12 Handling failures in the double checkpoint algorithm. aA failure hits node p. bA second
failure hits node p′, the buddy of node p, before the spare node had finished to receive the checkpoint
file of p′. This is a fatal failure for the application
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analysis is available in [28], together with extensions to a triple-checkpoint algorithm
where each node has two buddies instead of one, thereby dramatically decreasing
the risk of a fatal failure.

Finally, we mention that the risk of a fatal failure can be eliminated when using
a multi-level checkpointing protocol, such as FTI. [5] or SCR. [57]. Such protocols
allow to set different levels/types of checkpoints during the execution. Different
checkpoint levels correspond to different recovery abilities, and also suffer from
different checkpoint/recovery overheads. See [5, 57] for further details.

1.4 Probabilistic Models for Advanced Methods

In this section, we present two extensions of checkpointing performance models.
Section1.4.1 explains how to combine checkpointing with fault prediction, and dis-
cuss how the optimal period is modified when this combination is used. Section1.4.2
explains how to combine checkpointingwith replication, and discuss how the optimal
period is modified when this combination is used.

1.4.1 Fault Prediction

A possible way to cope with the numerous faults and their impact on the execution
time is to try and predict them. In this section we do not explain how this is done,
although the interested reader will find some answers in Chap. 2 and in [35, 70, 73].

A fault predictor (or simply a predictor) is a mechanism that warns the user
about upcoming faults on the platform.More specifically, a predictor is characterized
by two key parameters, its recall r , which is the fraction of faults that are indeed
predicted, and its precision p, which is the fraction of predictions that are correct (i.e.,
correspond to actual faults). In this section,we discuss how to combine checkpointing
and prediction to decrease the platform waste.

We start with a few definitions. LetµP be the mean time between predicted events
(both true positive and false positive), andµNPbe themean time between unpredicted
faults (false negative). The relations between µP, µNP, µ, r and p are as follows:

• Rate of unpredicted faults: 1
µNP

= 1−r
µ , since 1− r is the fraction of faults that are

unpredicted;
• Rate of predicted faults: r

µ = p
µP

, since r is the fraction of faults that are predicted,
and p is the fraction of fault predictions that are correct.

To illustrate all these definitions, consider the time interval below and the different
events occurring:
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fault fault fault fault fault

pred. pred. pred. pred. pred. pred.

Time

F+P F+P
pred.

F+P
pred.

F+P
fault

t

Actual faults:

Predictor:

Overlap:

During this time interval of length t , the predictor predicts six faults, and there
were five actual faults. One fault was not predicted. This gives approximately:µ = t

5 ,
µP = t

6 , and µNP = t . For this predictor, the recall is r = 4
5 (green arrows over red

arrows), and its precision is p = 4
6 (green arrows over blue arrows).

Now, given a fault predictor of parameters p and r , can we improve the waste?
More specifically, how to modify the periodic checkpointing algorithm to get better
results? In order to answer these questions, we introduce proactive checkpointing:
when there is a prediction, we assume that the prediction is given early enough so
that we have time for a checkpoint of size Cp (which can be different from C). We
consider the following simple algorithm:

• While no fault prediction is available, checkpoints are taken periodically with
period T ;

• When a fault is predicted, we take a proactive checkpoint (of length Cp) as late as
possible, so that it completes right at the time when the fault is predicted to strike.
After this checkpoint, we complete the execution of the period (see Fig. 1.13b, c);

We compute the expected waste as before. We reproduce Eq. (1.7) below:

Waste = WasteFF +Wastefault − WasteFFWastefault (1.33)

(a)

(b)

(c)

TimeTlost

fault

C T -C C T -C C D R T -C C

TimeWreg

pred.

T -Wreg-C

C T -C C Cp C T -C C T -C C

TimeWreg

F+P

T -Wreg-C

C T -C C Cp D R C T -C C T -C

Fig. 1.13 Actions taken for the different event types. a Unpredicted fault, b Prediction taken into
account—no actual fault, c Prediction taken into account—with actual fault
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While the value ofWasteFF is unchanged (WasteFF = C
T ), the value ofWastefault

is modified because of predictions. As illustrated in Fig. 1.13, there are different
scenarios that contribute toWastefault. We classify them as follows:

(1) Unpredicted faults: This overhead occurs each time an unpredicted fault
strikes, that is, on average, once every µNP seconds. Just as in Eq. (1.6), the
corresponding waste is 1

µNP

[ T
2 + D + R

]
.

(2) Predictions: We now compute the overhead due to a prediction. If the predic-
tion is an actual fault (with probability p), we lose Cp + D + R seconds, but if
it is not (with probability 1 − p), we lose the unnecessary extra checkpoint time
Cp. Hence

Tlost = p(Cp + D + R)+ (1 − p)Cp = Cp + p(D + R)

We derive the final value of Wastefault:

Wastefault =
1

µNP

(
T
2
+ D + R

)
+ 1

µP

(
Cp + p(D + R)

)

= 1 − r
µ

(
T
2
+ D + R

)
+ r

pµ

(
Cp + p(D + R)

)

= 1
µ

(
(1 − r)

T
2
+ D + R + rCp

p

)

We can now plug this expression back into Eq. (1.33):

Waste = WasteFF +Wastefault − WasteFFWastefault

= C
T

+
(
1 − C

T

)
1
µ

(
D + R + rCp

p
+ (1 − r)T

2

)
.

To compute the value of T p
FO, the period that minimizes the total waste, we use the

same reasoning as in Sect. 1.3.1 and obtain:

T p
FO =

√√√√2
(
µ −

(
D + R + rCp

p

))
C

1 − r
.

We observe the similarity of this result with the value of TFO from Eq. (1.9). If µ is

large in front of the resilience parameters, we derive that T p
FO =

√
2µC
1−r . This tells

us that the recall is more important than the precision. If the predictor is capable of
predicting, say, 84% of the faults, then r = 0.84 and

√
1 − r = 0.4. The optimal

period is increased by 40%, and the waste is decreased by the same factor. Prediction
can help!
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Going further. The discussion above has been kept overly simple. For instancewhen
a fault is predicted, sometimes there is not enough time to take proactive actions,
because we are already checkpointing. In this case, there is no other choice than
ignoring the prediction.

Furthermore, a better strategy should take into account at what point in the period
does the prediction occur. After all, there is no reason to always trust the predictor,
in particular if it has a bad precision. Intuitively, the later the prediction takes place
in the period, the more likely we are inclined to trust the predictor and take proactive
actions. This is because the amount of work that we could lose gets larger as we
progress within the period. On the contrary, if the prediction happens in the beginning
of the period, we have to trade-off the possibility that the proactive checkpoint may
be useless (if we indeed take a proactive action) with the small amount of work that
may be lost in the case where a fault would actually happen. The optimal approach
is to never trust the predictor in the beginning of a period, and to always trust it in
the end; the crossover point Cp

p depends on the time to take a proactive checkpoint
and on the precision of the predictor. See [4] for details.

Finally, it is more realistic to assume that the predictor cannot give the exact
moment where the fault is going to strike, but rather will provide an interval of time
for that event, a.k.a. a prediction window. More information can be found in [2].

1.4.2 Replication

Another possible way to cope with the numerous faults and their impact on the
execution time is to use replication. Replication consists in duplicating all computa-
tions. Processors are grouped by pairs, such as each processor has a replica (another
processor performing exactly the same computations, receiving the same messages,
etc.). See Fig. 1.14 for an illustration. We say that the two processes in a given pair

p1

p2

p1

p2

p1

p2

p1

p2

Time

Pair1

Pair2

Pair3

Pair4

Fig. 1.14 Processor pairs for replication: each blue processor is paired with a red processor. In
each pair, both processors do the same work
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are replicas. When a processor is hit by a fault, its replica is not impacted. The exe-
cution of the application can still progress, until the replica itself is hit by a fault later
on. This sounds quite expensive: by definition, half of the resources are wasted (and
this does not include the overhead of maintaining a consistent state between the two
processors of each pair). At first sight, the idea of using replication on a large parallel
platform is puzzling: who is ready to waste half of these expensive supercomputers?

In this section, we explain how replication can be used in conjunction with check-
pointing and under which conditions it becomes profitable. In order to do this, we
compare the checkpointing technique introduced earlier to the replication technique.

A perfectly parallel application is an application such that in a failure-free,
checkpoint-free environment, the time to execute the application (TimeBase) decreases
linearly with the number of processors. More precisely:

Timebase(N ) = Timebase(1)
N

.

Consider the execution of a perfectly parallel application on a platform with N =
2n processors, each with individual MTBF µind. As in the previous sections, the
optimization problem is to find the strategy minimizing Timefinal. Because we com-
pare two approaches using a different number of processors, we introduce the
Throughput, which is defined as the total number of useful flops per second:

Throughput = Timebase(1)
Timefinal

Note that for an application executing on N processors,

Throughput = N
(
1 − Waste

)

The standard approach, as seen before, is to use all 2n processors so the execution
of the application benefits from the maximal parallelism of the platform. This would
be optimal in a fault-free environment, but we are required to checkpoint frequently
because faults repeatedly strike the N processors. According to Proposition 1.2, the
platformMTBF isµ = µind

N . According to Theorem 1.1, the waste is (approximately)

Waste =
√

2C
µ =

√
2CN
µind

. We have:

ThroughputStd = N

(

1 −
√
2CN
µind

)

(1.34)

The second approach uses replication. There are n pairs of processors, all compu-
tations are executed twice, hence only half the processors produce useful flops. One
way to see the replication technique is as if there were half the processors using only
the checkpoint technique, with a different (potentially higher) mean time between
faults, µrep. Hence, the throughput ThroughputRep of this approach writes:
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ThroughputRep =
N
2

(

1 −
√

2C
µrep

)

(1.35)

In fact, rather than MTBF, we should say MTTI, forMean Time To Interruption. As
already mentioned, a single fault on the platform does not interrupt the application,
because the replica of the faulty processor is still alive. What is the value ofMNFTI ,
the Mean Number of Faults To Interruption, i.e., the mean number of faults that
should strike the platform until there is a replica pair whose processors have both
been hit? If we find how to compute MNFTI , we are done, because we know that

µrep = MNFTI × µ = MNFTI × µind

N

We make an analogy with a balls-into-bins problem to compute MNFTI . The
classical problem is the following: what is the expected number of balls that you will
need, if you throw these balls randomly into n bins, until one bins gets two balls?
The answer to this question is given by Ramanujans Q-Function [34], and is equal

to ⌈q(n)⌉ where q(n) = 2
3 +

√
πn
2 +

√
π

288n − 4
135n + . . . . When n = 365, this is

the birthday problem where balls are persons and bins are calendar dates; in the best
case, one needs two persons; in the worst case, one needs n + 1 = 366 persons; on
average, one needs ⌈q(n)⌉ = 25 persons.3

In the replication problem, the bins are the processor pairs, and the balls are
the faults. However, the analogy stops here. The problem is more complicated, see
Fig. 1.15 to see why. Each processor pair is composed of a blue processor and of a
red processor. Faults are (randomly) colored blue or red too. When a fault strikes a
processor pair, we need to know which processor inside that pair: we decide that it is
the one of the same color as the fault. Blue faults strike blue processors, and red faults
strike red processors. We now understand that we may need more than two faults
hitting the same pair to interrupt the application: we need one fault of each color.
The balls-and-bins problem to compute MNFTI is now clear: what is the expected
number of red and blue balls that you will need, if you throw these balls randomly
into n bins, until one bins gets one red ball and one blue ball? To the best of our
knowledge, there is no closed-form solution to answer this question, but a recursive
computation does the job:

Proposition 1.3 MNFTI = E(NFTI|0) where

E(NFTI|n f ) =
{
2 if n f = N ,

2N
2N−n f

+ 2N−2n f
2N−n f

E
(
NFTI|n f + 1

)
otherwise.

Proof LetE(NFTI|n f ) be the expectation of the number of faults needed to interrupt
the application, knowing that the application is still running and that faults have

3As a side note, one needs only 23 persons for the probability of a common birthday to reach 0.5
(a question often asked in geek evenings).
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Pair1 Pair2 Pair3 Pair4

Fig. 1.15 Modeling the state of the platform of Fig. 1.14 as a balls-into-bins problem. We put a red
ball in bin Pairi when there is a fault on its red processor p1, and a blue ball when there is a fault
on its blue processor p2. As long as no bin has received a ball of each color, the game is on

already hit n f different processor pairs. Because each pair initially has 2 replicas,
this means that n f different pairs are no longer replicated, and that N − n f are still
replicated. Overall, there are n f + 2(N − n f ) = 2N − n f processors still running.

The case n f = N is simple. In this case, all pairs have already been hit, and all
pairs have only one of their two initial replicas still running. A new fault will hit such
a pair. Two cases are then possible:

1. The fault hits the running processor. This leads to an application interruption, and
in this case E(NFTI|N ) = 1.

2. The fault hits the processor that has already been hit. Then the fault has no
impact on the application. The MNFTI of this case is then: E(NFTI|N ) = 1 +
E (NFTI |N ).

The probability of fault is uniformly distributed between the two replicas, and thus
between these two cases. Weighting the values by their probabilities of occurrence
yields:

E (NFTI |N ) = 1
2

× 1+ 1
2

× (1+ E (NFTI |N )) ,

hence E (NFTI |N ) = 2.
For the general case 0 ≤ n f ≤ N − 1, either the next fault hits a new pair, i.e., a

pair whose 2 processors are still running, or it hits a pair that has already been hit,
hence with a single processor running. The latter case leads to the same sub-cases as
the n f = N case studied above. The fault probability is uniformly distributed among
the 2N processors, including the ones already hit. Hence the probability that the next
fault hits a new pair is 2N−2n f

2N . In this case, the expected number of faults needed
to interrupt the application fail is one (the considered fault) plus E

(
NFTI|n f + 1

)
.

Altogether we have:

E
(
NFTI|n f

)
= 2N−2n f

2N ×
(
1+ E

(
NFTI|n f + 1

))

+ 2n f
2N ×

( 1
2 × 1+ 1

2

(
1+ E

(
NFTI|n f

)))
.

Therefore,
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E
(
NFTI|n f

)
= 2N

2N − n f
+ 2N − 2n f

2N − n f
E
(
NFTI|n f + 1

)
.

Let us compare the throughput of each approachwith an example. FromEqs. (1.34)
and (1.35), we have

ThroughputRep ≥ ThroughputStd ⇔ (1 −
√

2CN
MNFTI µind

) ≥ 2(1 −
√
2CN
µind

)

which we rewrite into
C ≥ µind

2N
1

(2 − 1√
MNFTI

)2
(1.36)

Take a parallel machine with N = 220 processors. This is a little more than one
million processors, but this corresponds to the size of the largest platforms today.
Using Proposition 1.3, we compute MNFTI = 1284.4 Assume that the individual
MTBF is 10years, or in seconds µind = 10 × 365× 24 × 3600. After some painful
computations, we derive that replication is more efficient if the checkpoint time is
greater than 293 seconds (around 6 minutes). This sets a target both for architects
and checkpoint protocol designers.

Maybe you would say say that µind = 10years is pessimistic, because we rather
observe that µind = 100years in current supercomputers. Since µind = 100years
allows us to use a checkpointing period of one hour, you might then decide that
replication is not worth it. On the contrary, maybe youwould say thatµind = 10years
is optimistic for processors equipped with thousands of cores and rather take µind =
1year. In that case, unless you checkpoint in less than 30 s, better be prepared for
replication. The beauty of performancemodels is that you can decidewhich approach
is better without bias nor a priori, simply by plugging your own parameters into
Eq. (1.36).

Going further. There are two natural options “counting” faults. The option chosen
above is to allow new faults to hit processors that have already been hit. This is the
option chosen in [33], who introduced the problem. Another option is to count only
faults that hit running processors, and thus effectively kill replica pairs and interrupt
the application. This second option may seemmore natural as the running processors
are the only ones that are important for executing the application. It turns out that
both options are almost equivalent, the values of theirMNFTI only differ by one [19].

We refer the interested reader to Chap. 4 for a full analysis of replication. For con-
venience, we provide a few bibliographical notes in the following lines. Replication
has long been used as a fault tolerance mechanism in distributed systems [38], and in
the context of volunteer computing [51]. Replication has recently received attention
in the context of HPC (High Performance Computing) applications [31, 33, 66, 72].
While replicating all processors is very expensive, replicating only critical processes,
or only a fraction of all processes, is a direction being currently explored under the
name partial replication.
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Speaking of critical processes, we make a final digression. The de-facto stan-
dard to enforce fault tolerance in critical or embedded systems is Triple Modular
Redundancy and voting, or TMR [56]. Computations are triplicated on three differ-
ent processors, and if their results differ, a voting mechanism is called. TMR is not
used to protect from fail-stop faults, but rather to detect and correct errors in the
execution of the application. While we all like, say, safe planes protected by TMR,
the cost is tremendous: by definition, two thirds of the resources are wasted (and this
does not include the overhead of voting when an error is identified).

1.5 Application-Specific Fault Tolerance Techniques

All the techniques presented and evaluated so far are general techniques: the assump-
tions theymake on the behavior of the application are as little constraining as possible,
and the protocol to tolerate failures considered two adversaries: the occurrence of
failures, which can happen at the worst possible time, and also the application itself,
which can take the worst possible action at the worst possible moment.

We now examine the case of application-specific fault tolerance techniques in
HPC: when the application itself may use redundant information inherent of its
coding of the problem, to tolerate misbehavior of the supporting platform. As one
can expect, the efficiency of such approaches can be orders of magnitude better than
the efficiency of general techniques; their programming, however, becomes a much
harder challenge for the final user.

First, the application must be programmed over a middleware that not only tol-
erates failures for its internal operation, but also exposes them in a manageable
way to the application; then, the application must maintain redundant information
exploitable in case of failures during its execution. We will present a couple of
cases of such applicative scenarios. Finally, we will discuss the portability of such
approaches, and present a technique that allows the utilization of application-specific
fault tolerance technique inside a more general application, preserving the fault
tolerance property while exhibiting performance close to the one expected from
application-specific techniques.

1.5.1 Fault-Tolerant Middleware

The first issue to address, to consider application-specific fault tolerance, is how to
allow failures to be presented to the application. Even in the case of fail-stop errors,
that can be detected easily under the assumption of pseudo-synchronous systems
usually made in HPC, the most popular programming middleware, MPI, does not
allow to expose failures in a portable way.

The MPI-3 specification has little to say about failures and their exposition to the
user:
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It is the job of the implementor of the MPI subsystem to insulate the user from this unreli-
ability, or to reflect unrecoverable errors as failures. Whenever possible, such failures will
be reflected as errors in the relevant communication call. Similarly, MPI itself provides no
mechanisms for handling processor failures.

MPI Standard, v3.0, p. 20, l. 36:39

This fist paragraph would allow implementations to expose the failures, limiting
their propagation to the calls that relate to operations that cannot complete because
of the occurrence of failures. However, later in the same standard:

This document does not specify the state of a computation after an erroneous MPI call has
occurred.

MPI Standard v3.0, p. 21, l. 24:25

Unfortunately, most Open Source MPI implementations, and the numerous
vendor-specific MPI implementations that derive from them, chose, by lack of
demand from their users, and by lack of consensus, to interpret these paragraphs
in a way that limits the opportunities for the user to tolerate failures: in the worst
case, even if all communicators hit by failures are marked to return in case of error,
the application is simply shutdown by the runtime system, as a cleanup procedure;
in the best case, the control is given back to the user program, but no MPI call
that involves a remote peer is guaranteed to perform any meaningful action for the
user, leaving the processes of the application as separate entities that have to rely on
external communication systems to tolerate failures.

The Fault Tolerance Working Group of the MPI Forum has been constituted
to address this issue. With the dawn of extreme scale computing, at levels where
failures become expected occurrences in the life of an application, MPI has set a cap
to evolve towards more scalability. Capacity for the MPI implementation to continue
its service in case of failures, and capacity for the MPI language to present these
failures to the application, or to the software components that wish to handle these
failures directly, are key among themilestones to remove technological locks towards
scalability. Chapter 3 details the User-Level Failures Mitigation (ULFM) proposal
of the FTWG of the MPI Forum in its Sect. 3.8. We present here its main features,
as an introduction.

There are two main issues to address to allow applications written in MPI to
tolerate failures:

• Detect and report failures
• Provide service after the occurrence of failures

ULFM exposes failures to the application through MPI exceptions. It introduces
a couple of error classes that are returned by pertaining MPI calls if a failure strikes,
and prevents their completion (be it because the failure happened before or during
the call). As per traditional MPI specification, exceptions are raised only if the user
defined a specific error handler for the corresponding communicator, or if it specified
to use the predefined error handler that makes exceptions return an error code.

In those cases, theULFMproposal states that noMPI call should block indefinitely
because of the occurrence of failures. Collective calls must return either a success
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code if they did complete despite the failure, or an error code if their completion was
compromised; point to point operations must also return. This raises two issues:

• the same collective call may return with success or fail, depending on the rank.
For example, a broadcast operation is often implemented using a broadcast tree to
provide logarithmic overheads. If a node low in the broadcast tree is subject to a
failure, the root of the tree may not notice the failure and succeed completing all its
local operations, while trees under the failed node will not receive the information.
In all cases, all processes must enter the broadcast operation, as the meaning of
collective is not changed, and all processes must leave the operation, as none
could stall forever because of a failure. Nodes under the failed process may raise
an exception, while nodes above it may not notice the failure during this call.

• in the case of point to point operations, it may become hard for the implementation
to decide whether an operation will complete or not. Take the example of a receive
from any source operation: any process in the communicator may be the sender
that would, in a failure-free execution, send the message that would match this
reception. As a consequence, if a single process failed, the MPI implementation
cannot safely decide (unless it finds incoming messages to match the reception) if
the reception is going to complete or not. Since the specification does not allow for
a process to stall forever because of the occurrence of failures, the implementation
should raise an exception. However, the reception operation cannot be marked
as failed, since it is possible that the matching send comes later from a different
process. The specification thus allows the implementation to delay the notification
for as long as seems fit, but for a bounded time, after which the reception must
return with a special exception that marks the communication as undecided, thus
giving back the control to the application to decide if that message is going to
come or not.

To take such decisions, the application has access to a few additional routines.
The application can acknowledge the presence of failures in a communicator (using
MPI_Comm_failure_ack, and resume its operation over the same communicator
that holds failed processes. Over such a communicator, any operation that involves
a failed process will fail. Thus, collective operations that involve all processes in
the communicator will necessarily fail. Point to point communications, on the other
hand, may succeed if they are not a specific emission to a failed process or recep-
tion from a failed process. Receptions from any source will succeed and wait for a
matching message, as the user already acknowledged the presence of some failures.
If the user wanted to cancel such a reception, she can decide by requesting the MPI
implementation to provide the list of failed processes after an acknowledgment (via
MPI_Comm_get_acked). If more processes fail after the acknowledgment, more
exceptions will be raised and can be acknowledged. Point to point communications
will thus continue to work after a failure, as long as they do not directly involve an
acknowledged failed process.

The application may also need to fix the communicator, in order to allow for
collective operations to succeed. In order to clearly separate communications that
happened before or after a set of failures, ULFM does not provide a way to fix
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the communicator. Instead, it provides a routine that exclude the failed processes
from a communicator and creates a new one, suitable for the whole range of MPI
routines (the routine MPI_Comm_shrink). This communicator creation routine is
specified to work despite the occurrence of failures. The communicator that it creates
must exclude failures that were acknowledged before entering the routine, but since
failures may happen at any time, the newly created communicator may itself include
failed processes, for example if a failure happened just after its creation.

The last routine provided by the ULFM proposal is a routine to allow resolution
of conflicts after a failure. MPI_Comm_agree provides a consensus routine over
the surviving ranks of a communicator. It is critical to determine an agreement in
the presence of failures, since collective operations have no guarantee of consistent
return values if a failure happens during their execution. Its usage is documented
more closely in Chap.3, as it interacts with MPI_Comm_failure_ack to enable
the user to construct a low cost group membership service, that provides a global
view of processes that survived a set of failures.

The leading idea of ULFM was to complement the MPI specification with a
small set of routines, and extended specification for the existing routines, in case of
process failures, enabling the user application or library to notice failures, react and
continue the execution of the application despite the occurrence of these failures.
The specification targets a lean set of changes, not promoting any specific model to
tolerate failures, but providing the minimal building blocks to implement, through
composition of libraries or directly in the application, a large spectrumof application-
specific fault tolerance approaches. In the following, we discuss a few typical cases
that were implemented over this ULFM proposal.

1.5.2 ABFT for Dense Matrix Factorization

Algorithm-Based Fault Tolerance (ABFT) was introduced by Abraham and Huang
in 1984 [45] to tolerate possible memory corruptions during the computation of a
densematrix factorization. It is a good example of application-specific fault tolerance
technique that is not simplistic, but provides an extreme boost in performance when
used (compared to a general technique, like rollback-recovery). ABFT and disk-less
checkpointing have been combined to apply to basic matrix operations like matrix-
matrix multiplication [8, 22, 23] and have been implemented on algorithms similar
to those of ScaLAPACK [24], which is widely used for dense matrix operations on
parallel distributed memory systems, or the High Performance Linpack (HPL) [26]
and to the Cholesky factorization [40].

An ABFT scheme for dense matrix factorization was introduced in [16, 29], and
we explain it here, because it combines many application-level techniques, includ-
ing replication, user-level partial checkpointing, and ABFT itself. We illustrate this
technique with the LU factorization algorithm, which is the most complex due
to its pivoting, but the approach applies to other direct methods of factorization.
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Section3.7.3 of Chap.3 presents a similar algorithm for the QR factorization in the
context of a less supportive communication middleware.

To support fail-stop errors, an ABFT scheme must be built on top of a fault-
aware middleware. We assume a failure, defined in this section as a process that
completely and definitely stops responding, triggering the loss of a critical part of the
global application state, could occur at any moment and can affect any part of the
application’s data.

Algorithm Based Fault Tolerance. The general idea of ABFT is to introduce infor-
mation redundancy in the data, and maintain this redundancy during the computa-
tion. Linear algebra operations over matrices are well suited to apply such a scheme:
the matrix (original data of the user) can be extended by a number of columns, in
which checksums over the rows are stored. The operation applied over the initial
matrix can then be extended to apply at the same time over the initial matrix and its
extended columns, maintaining the checksum relation between data in a row and the
corresponding checksum column(s). Usually, it is sufficient to extend the scope of
the operation to the checksum rows, although in some cases the operation must be
redefined.

If a failure hits processes during the computation, the data host by these processes
is lost. However, in theory, the checksum relation being preserved, if enough infor-
mation survived the failure between the initial data held by the surviving processes
and the checksum columns, a simple inversion of the checksum function is sufficient
to reconstruct the missing data and pursue the operation.

No periodical checkpoint is necessary, and more importantly the recovery proce-
dure brings back the missing data at the point of failure, without introducing a period
of re-execution as the general techniques seen above impose, and a computational
cost that is usually linear with the size of the data. Thus, the overheads due to ABFT
are expected to be significantly lower than those due to rollback-recovery.

LU Factorization: The goal of a factorization operation is usually to transform a
matrix that represents a set of equations into a form suitable to solve the problem
Ax = b, where A and b represent the equations, A being a matrix and b a vector of
same height. Different transformations are considered depending on the properties
of the matrix, and the LU factorization transforms A = LU where L is a lower
triangular matrix, and U an upper triangular matrix. This transformation is done by
blocks of fixed size inside the matrix to improve the efficiency of the computational
kernels. Figure1.16 represents the basic operations applied to a matrix during a
block LU factorization. The GETF2 operation is a panel factorization, applied on a
block column. This panel operation factorizes the upper square, and scales the lower
rectangle accordingly. The output of that operation is then used to the right of the
factored block to scale it accordingly using a triangular solve (TRSM), and the trailing
matrix is updated accordingly using a matrix-matrix multiplication (GEMM). The
block column and the block row are in their final LU form, and that trailing matrix
must be transformed using the same algorithm, until the last block of the matrix is in
the LU form. Technically, each of these basic steps is usually performed by applying
a parallel Basic Linear Algebra Subroutine (PBLAS).
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Fig. 1.16 Operations
applied on a matrix, during
the LU factorization. A’ is
the trailing matrix, that needs
to be factorized using the
same method until the entire
initial matrix is in the form
LU

A A'

U

L

U

GETF2: factorize a
column block

TRSM - Update row block

GEMM: Update
the trailing

matrix

Fig. 1.17 Block cyclic
distribution of a 8mb × 8nb
matrix over a 2 × 3 process
grid

DataDistribution. For a parallel execution, the data of thematrixmust be distributed
among the different processors. For dense matrix factorization, the data is distributed
following a 2D block cyclic distribution: processes are arranged over a 2D cyclic
processor grid of size P × Q, the matrix is split in blocks of size mb × nb, and the
blocks are distributed among the processes cyclically. Figure1.17 shows how the
blocks are distributed in a case of a square matrix of size 8mb × 8nb, and a process
grid of size 2 × 3.

Reverse Neighboring Scheme: If one of the processes is subject of failure, many
blocks are lost. As explained previously, the matrix is extended with checksum
columns to introduce information redundancy. Figure1.18 presents how the matrix
is extended with checksum columns following a reverse neighboring scheme. The
reverse neighboring scheme is a peculiar arrangement of data that simplifies signifi-
cantly the design of the ABFT part of the algorithm.

The data matrix has 8 × 8 blocks and therefore the size of checksum is 8 × 3
blocks with an extra 8 × 3 blocks copy. Checksum blocks are stored on the right of

Fig. 1.18 Reverse
neighboring scheme of
checksum storage
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the data matrix. In the example, the first 3 block columns produce the checksum in
the last two block columns (hence making 2 duplicate copies of the checksum); the
next 3 block columns then produce the next 2 rightmost checksum columns, etc.

Because copies are stored in consecutive columns of the process grid, for any
2D grid P × Q with Q > 1, the checksum duplicates are guaranteed to be stored
on different processors. The triangular solve (TRSM) and trailing matrix update
(GEMM) are applied to the whole checksum area until the first three columns are
factored. In the following factorization steps, the two last block columns of check-
sum are excluded from the TRSM and GEMM scope. Since TRSM and GEMM
claim most of the computation in the LU factorization, shrinking the update scope
greatly reduces the overhead of the ABFT mechanism by diminishing the amount of
(useless) extra computations; meanwhile, the efficiency of the update operation itself
remains optimal as, thanks to the reverse storage scheme, the update still operates
on a contiguous memory region and can be performed by a single PBLAS call.

Checksum blocks are duplicated for a reason: since they are stored on the same
processes as the matrix and following the same block cyclic scheme, when a process
is subject to a failure, blocks of initial data are lost, but also blocks of checksums.
Because of the cyclic feature of the data distribution, all checksumblocksmust remain
available to recover the missing data. Duplicating them guarantees that if a single
failure happens, one of the copies will survive. In the example, checksum blocks
occupy almost as much memory as the initial matrix once duplicated. However, the
number of checksumblock columnnecessary is 2N/(Q×nb), thus decreases linearly
with the width of the process grid.

To simplify the figures, in the following we will represent the checksum blocks
over a different process grid, abstracting the duplication of these blocks as if they
were hosted by virtual processes that are not subject to failures. We consider here an
algorithm that can tolerate only one simultaneous failure (on the same process row),
hence at least one of the two checksum blocks will remain available.

Q-Panel: The idea of the ABFT factorization is that by extending the scope of the
operation to the checksum blocks, the checksum property is maintained between the
matrix and the checksum blocks: a block still represents the sum of the blocks of the
initial matrix. This is true for the compute-intensive update operations, like GEMM
and TRSM. Unfortunately, this is not true for the GETF2 operation that cannot be
extended to span over the corresponding checksum blocks.

To deal with this, a simplistic approach would consist in changing the compu-
tational kernel to go update the checksum blocks during the GETF2 operation. We
avoid doing this because this would introduce more synchronization, having more
processes participate to this operation (as the processes spanning over the correspond-
ing checksum blocks are not necessarily involved in a given GETF2 operation). The
GETF2 operation is already a memory-bound operation, that require little computa-
tion compared to the update operations. It also sits in the critical path of the execution,
and is amajor blocker to performance, so introducingmore synchronization andmore
delay is clearly detrimental to the performance.

That is the reason why we introduced the concept of Q-panel update. Instead of
maintaining the checksum property at all time for all blocks, we will let some of
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GETF2 GEMM

TRSM

Fig. 1.19 Q-panel update of the ABFT LU factorization

the checksum blocks drift away, for a bounded time, and tolerate the risk for these
Q-panel blocks with another approach. Then, when the cost of checksum update can
be safely absorbed with maximal parallelism, we will let the algorithm update the
checksums of the drifted away blocks, and pursue the computation.

ABFT LU Factorization: We now present the steps of the ABFT LU factorization
using Q-panel update :

1. At a beginning of a Q-panel, when process (0, 0) hosts the first block on which
GETF2 is going to be applied, processes take a partial checkpoint of the matrix:
the first Q-block columns of the trailing matrix are copied, as well as the block
column of corresponding checksums.

2. Then, the usual operations of LU are applied, using the first block column of the
trailing matrix as a block panel (see Fig. 1.19): GETF2 is applied on that block
column, then TRSM extended to the corresponding checksums, and GEMM, also
extended on the corresponding checksums, producing a smaller trailing matrix.
The checksums that correspond to the previously factored part of the matrix are
left untouched, as the corresponding data in the matrix, so the checksum property
is preserved for them. The checksums that were just updated with TRSM and
GEMM also preserve the checksum property, as the update operations preserve
the checksum property.
The part of the checksum represented in red in the figure, however, violates the
checksum property: the block column on which GETF2 was just applied hold
values that are not represented in the corresponding block column in the reserve
neighboring storing scheme.

3. The algorithm iterates, using the second block column of the Q-panel as a panel,
until Q panels have been applied. In that case, the checksum property is pre-
served everywhere, except between the blocks that belong to the Q-panel, and
the corresponding checksum block column. A checksum update operation is then
executed, to recompute this checksum, the checkpoint saved at the beginning of
this Q-panel loop can be discarded, and the next Q-panel loop can start.

Failure Handling. When a failure occurs, it is detected by the communication mid-
dleware, and the normal execution of the algorithm is interrupted. The ABFT fac-
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Fig. 1.20 Single failure
during a Q-panel update of
the ABFT LU factorization

Fig. 1.21 Data restored
using valid checksums

torization enters its recovery routine. Failures can occur at any point during the
execution. The first step of the recovery routine is to gather the status of all surviving
processes, and determine when the failure happened. Spare processes can then be
reclaimed to replace the failed ones, or dynamic process management capabilities of
the communication middleware are used to start new processes that will replace the
missing ones.

In the general case, the failure happened while some blocks have been updated,
and others not, during one of the Q-panels (see Fig. 1.20). Since the checksum blocks
are replicated on adjacent processes, one copy survived the failure, so they are not
missing. For all blocks where the checksum property holds, the checksum blocks are
used to reconstruct the missing data.

The checkpoint of the Q-panel at the beginning of the last Q-panel step also lost
blocks, since a simple local copy is kept. But because the processes also copied the
checksum blocks corresponding to this Q-panel, they can rebuild the missing data
for the checkpoint (Fig. 1.21).

The matrix is then overwritten with the restored checkpoint; the corresponding
checksum blocks are also restored to their checkpoint. Then, the processes re-execute
part of the update and factorization operations, but limiting their scope to the Q-panel
section, until they reach the step when the Q-panel factorization was interrupted. At
this point, all data has been restored to the time of failure, and the processes continue
their execution, and are in a state to tolerate another failure.

If a second failure happens before the restoration is complete (or if multiple fail-
ures happen), the applicationmay enter a statewhere recovery is impossible. This can
be mitigated by increasing the number of checksum block columns, and by replac-
ing checksum copies with linearly independent checksum functions. Then, when
multiple failures occur, the restoration process consists of solving a small system of
equations for each block, to determine the missing values. More importantly, this
exhibits one of the features of application-specific fault tolerance: the overheads are
a function of the risk the developer or user is ready to take.
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Fig. 1.22 Single failure during a Q-panel update of the ABFT LU factorization

Performance of ABFT LU. Fig. 1.22 (from [16]) shows a weak scalability study
of the ABFT scheme that we presented above. On the left axis, the lines show the
relative overhead of the ABFT-LU implementation in a failure-free and 1-failure/1-
recovery scenario, compared to the non fault-tolerant implementation. On the right
axis, the bar graphs show the raw performance of each scenario. This is a weak-
scaling experiment, and the matrix size progresses with the process grid size, so that
in each case, each processor is responsible for the same amount of data. We denote
by Q × Q; N in the x-axis the process grid size (P × Q) and the matrix size (N ).

That experiment was conducted on the NSF Kraken supercomputer, hosted at the
National Institute for Computational Science (NICS). At the time of the experiment,
this machine featured 112,896 2.6GHz AMD Opteron cores, 12 cores per node,
with the Seastar interconnect. At the software level, to serve as a comparison base,
we used the non fault-tolerant ScaLAPACK LU in double precision with block size
mb = nb = 100.

The recovery procedure adds a small overhead that also decreases when scaled to
large problem size and process grid. For largest setups, only 2–3 percent of the exe-
cution time is spent recovering from a failure. Due to the introduction of checksum,
operations counts and communication have been increased, as update operation span
on a largermatrix comprised of the original trailingmatrix and the checksums.During
checkpointing and recovery, extra workload is performed and this all together leads
to higher computing complexity than the original implementation in ScaLAPACK.

For simplicity of description, we consider square data matrices of size N × N
distributed on a square grid Q × Q. The operation count ration for LU factorization
without and with checksum is:
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Clearly limQ→+∞ R = 1. Hence for systems with high number of processes, the
extra flops for updating checksum columns is negligible with respect to the normal
flops realized to compute the result.

In addition, checksums must be generated, once at the start of the algorithm, the
second time at the completion of a Q-wide panel scope. Both these activities account
for O(N 2) extra computations, but can be computed at maximal parallelism, since
there is no data dependency.

1.5.3 Composite Approach: ABFT and Checkpointing

ABFT is a useful technique for production systems, offering protection to important
infrastructure software.Aswe have seen,ABFTprotection and recovery activities are
not only inexpensive, but also have a negligible asymptotic overheadwhen increasing
node count, which makes them extremely scalable. This is in sharp contrast with
checkpointing, which suffers from increasing overhead with system size. Many HPC
applications do spend quite a significant part of their total execution time inside a
numerical library, and in many cases, these numerical library calls can be effectively
protected by ABFT.

However, typical HPC applications do spend some time where they perform com-
putations and data management that are incompatible with ABFT protection. The
ABFT technique, as the name indicates, allows for tolerating failures only during
the execution of the algorithm that features the ABFT properties. Moreover, it then
protects only the part of the user dataset that is managed by the ABFT algorithm.
In case of a failure outside the ABFT-protected operation, all data is lost; in case of
a failure during the ABFT-protected operation, only the data covered by the ABFT
scheme is restored. Unfortunately, these ABFT-incompatible phases force users to
resort to general-purpose (presumably checkpoint based) approaches as their sole
protection scheme.

A composition scheme proposed in [9, 11], protects the application partly with
general fault tolerance techniques, and partlywith application-specific fault tolerance
techniques, harnessing the best of each approach. Performance is close to ABFT,
as the ABFT-capable routines dominate the execution, but the approach is generic
enough to be applied to any application that uses for at least a part of its execution
ABFT-capable routines, so generality is not abandoned, and the user is not forced
to rely only on generic rollback-recovery. We present this scheme below, because
the underlying approach is key to the adoption of application-specific fault tolerance
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while( !converged() ) {
  /* Extract data from the simulator, create the LA problem */
  sim2mat();

  /* Factorize the matrix, and solve the problem */
  dgetrf();
  dsolve();

  /* Update simulation with result vector */
  vec2sim();
}

GENERAL

GENERAL

LIBRARY

Fig. 1.23 Pseudo-code of a typical application using Linear Algebra routines

methods in libraries: without a generic composition scheme, simply linking with
different libraries that provide internal resilience capabilities to protect their data from
a process crashwill notmake an application capable of resisting such crashes: process
failure breaks the separation introduced by library composition in the software stack,
and non protected data, as well as the call stack itself, must be protected by another
mean.

As an illustration, consider an application that works as the pseudo-code given in
Fig. 1.23. The application has two data: a matrix, on which linear algebra operations
are performed, and a simulated state. It uses two libraries: a simulation library that
changes the simulated state, and formulates a problem as an equation problem, and
a linear algebra library that solves the problem presented by the simulator. The first
library is not fault-tolerant, while there is an ABFT scheme to tolerate failures in the
linear algebra library.

To abstract the reasoning, we distinguish two phases during the execution: during
General phases, we have no information about the application behavior, and an
algorithm-agnostic fault tolerance technique, namely checkpoint and rollback recov-
ery, must be used. On the contrary, during Library phases, we know much more
about the behavior of the library, and we can apply ABFT to ensure resiliency.

ABFT&PERIODICCKPTAlgorithm. During aGeneral phase, the application
can access the whole memory; during a Library phase, only the Library dataset
(a subset of the application memory, which is passed as a parameter to the library
call) is accessed. The Remainder dataset is the part of the application memory that
does not belong to the Library dataset.

The ABFT&PeriodicCkpt composite approach (see Fig. 1.24) consists of alter-
nating between periodic checkpointing and rollback recovery on one side, and ABFT
on theother side, at different phases of the execution.Every time the application enters
a Library phase (that can thus be protected by ABFT), a partial checkpoint is taken
to protect the Remainder dataset. The Library dataset, accessed by the ABFT
algorithm, need not be saved in that partial checkpoint, since it will be reconstructed
by the ABFT algorithm inside the library call.
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Fig. 1.24 ABFT&PeriodicCkpt composite approach
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Fig. 1.25 Fault handling during a Library phase

When the call returns, a partial checkpoint covering themodified Library dataset
is added to the partial checkpoint taken at the beginning of the call, to complete it
and to allow restarting from the end of the terminating library call. In other words,
the combination of the partial entry and exit checkpoints forms a split, but complete,
coordinated checkpoint covering the entire dataset of the application.

If a failure is detected while processes are inside the library call (Fig. 1.25), the
crashed process is recovered using a combination of rollback recovery and ABFT.
ABFT recovery is used to restore the Library dataset before all processes can
resume the library call, as would happen with a traditional ABFT algorithm. The
partial checkpoint is used to recover the Remainder dataset (everything except the
data covered by the current ABFT library call) at the time of the call, and the process
stack, thus restoring it before quitting the library routine. The idea of this strategy is
that ABFT recovery will spare some of the time spent redoing work, while periodic
checkpointing can be completely de-activated during the library calls.

DuringGeneral phases, regular periodic coordinated checkpointing is employed
to protect against failures (Fig. 1.26). In case of failure, coordinated rollback recovery
brings all processes back to the last checkpoint (at most back to the split checkpoint
capturing the end of the previous library call).

ABFT&PERIODICCKPT Algorithm Optimization. Recall from Sect. 1.3.2 that
a critical component to the efficiency of periodic checkpointing algorithms is the
duration of the checkpointing interval. A short interval increases the algorithm over-
heads, by introducing many coordinated checkpoints, during which the application
experiences slowdown, but also reduces the amount of time lost when there is a fail-
ure: the last checkpoint is never long ago, and little time is spent re-executing part
of the application. Conversely, a large interval reduces overhead, but increases the
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Fig. 1.26 Fault handling during a General phase

time lost in case of failure. In the ABFT&PeriodicCkpt algorithm, we interleave
periodic checkpointing protected phases with ABFT protected phases, during which
periodic checkpointing is de-activated. Thus, different cases have to be considered:

• When the time spent in a General phase is larger than the optimal checkpoint
interval, periodic checkpointing is used during these phases in the case of ABFT-
&PeriodicCkpt;

• When the time spent in a General phase is smaller than the optimal checkpoint
interval, the ABFT&PeriodicCkpt algorithm already creates a complete valid
checkpoint for this phase (formed by combining the entry and exit partial check-
points), so the algorithm will not introduce additional checkpoints.

Moreover, the ABFT&PeriodicCkpt algorithm forces (partial) checkpoints at
the entry and exit of library calls; thus if the time spent in a library call is very
small, this approach will introduce more checkpoints than a traditional periodic
checkpointing approach. The time complexity of library algorithms usually depends
on a few input parameters related to problem size and resource number, and ABFT
techniques have deterministic, well known time overhead complexity. Thus, when
possible, the ABFT&PeriodicCkpt algorithm features a safeguard mechanism: if
the projected duration of a library call with ABFT protection (computed at runtime
thanks to the call parameters and the algorithmcomplexity) is smaller than the optimal
periodic checkpointing interval, then ABFT is not activated, and the corresponding
Library phase is protected using the periodic checkpointing technique only.

1.5.3.1 Performance Model of ABFT&PERIODICCKPT

The execution of the application is partitioned into epochs of total duration T0.
Within an epoch, there are two phases: the first phase is spent outside the library (it is
aGeneral phase, of duration TG), and only periodic checkpointing can be employed
to protect from failures during that phase. Then the second phase (a Library phase
of duration TL ) is devoted to a library routine that has the potential to be protected
by ABFT. Let α be the fraction of time spent in a Library phase: then we have
TL = α × T0 and TG = (1 − α) × T0.
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As mentioned earlier, another important parameter is the amount of memory that
is accessed during the Library phase (the Library dataset). This parameter is
important because the cost of checkpointing in each phase is directly related to the
amount of memory that needs to be protected. The total memory footprint is M , and
the associated checkpointing cost isC (we assume a finite checkpointing bandwidth,
so C > 0). We write M = ML +ML , where ML is the size of the Library dataset,
and ML is the size of the Remainder dataset. Similarly, we write C = CL + CL ,
where CL is the cost of checkpointing ML , and CL the cost of checkpointing ML .
We can define the parameter ρ that defines the relative fraction of memory accessed
during the Library phase by ML = ρM , or, equivalently, by CL = ρC .

Fault-free execution. During the General phase, we separate two cases. First, if
the duration TG of this phase is short, i.e. smaller than PG −CL , which is the amount
of work during one period of length PG (and where PG is determined below), then
we simply take a partial checkpoint at the end of this phase, before entering the
ABFT-protected mode. This checkpoint is of duration CL , because we need to save
only the Remainder dataset in this case. Otherwise, if TG is larger than PG − CL ,
we rely on periodic checkpointing during the General phase: more specifically,
the regular execution is divided into periods of duration PG = W + C . Here W is
the amount of work done per period, and the duration of each periodic checkpoint
is C = CL + CL , because the whole application footprint must be saved during a
General phase. The last period is different: we execute the remainder of the work,
and take a final checkpoint of duration CL before switching to ABFT-protected
mode. The optimal (approximated) value of PG will be computed below.

Altogether, the length T ff
G of a fault-free execution of the General phase is the

following:

• If TG ≤ PG − CL , then T ff
G = TG + CL

• Otherwise, we have ⌊ TG
Work ⌋ periods of length PG , plus possibly a shorter last

period if TG is not evenly divisible by W . In addition, we need to remember that
the last checkpoint taken is of length CL instead of C .

This leads to

T ff
G =

⎧
⎪⎨

⎪⎩

TG + CL if TG ≤ PG − CL
⌊ TG
PG−C × PG⌋ + (TG mod W )+ CL if TG > PG − CL and TG mod W ̸= 0
TG

PG−C × PG − CL if TG > PG − CL and TG mod W = 0
(1.38)

Now consider the Library phase: we use the ABFT-protection algorithm, whose
cost is modeled as an affine function of the time spent: if the computation time of
the library routine is t , its execution with the ABFT-protection algorithm becomes
φ × t . Here, φ > 1 accounts for the overhead paid per time-unit in ABFT-protected
mode. This linear model for the ABFT overhead fits the existing algorithms for linear
algebra, but other models could be considered. In addition, we pay a checkpoint CL
when exiting the library call (to save the final result of the ABFT phase). Therefore,
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the fault-tree execution time is

T ff
L = φ × TL + CL (1.39)

Finally, the fault-free execution time of the whole epoch is

T ff = T ff
G + T ff

L (1.40)

where T ff
G and T ff

L are computed according to the Eqs. (1.38) and (1.39).

Cost of failures. Next we have to account for failures. For each phase, we have a
similar equation: the final execution time is the fault-free execution time, plus the
number of failures multiplied by the (average) time lost per failure:

T final
G = T ff

G + T final
G

µ
× t lostG (1.41)

T final
L = T ff

L + T final
L

µ
× t lostL (1.42)

Equations (1.41) and (1.42) correspond toEq. (1.5) inSect. (1.3.1). Equation (1.41)
reads as follows: T ff

G is the failure-free execution time, to which we add the time

lost due to failures; the expected number of failures is
T final
G
µ , and t lostG is the average

time lost per failure. We have a similar reasoning for Eq. (1.42). Then, t lostG and t lostL
remain to be computed. For t lostG (General phase), we discuss both cases:

• If TG ≤ PG − CL : since we have no checkpoint until the end of the General
phase, we have to redo the execution from the beginning of the phase. On average,

the failure strikes at the middle of the phase, hence the expectation of loss is
T ff
G
2

time units. We then add the downtime D (time to reboot the resource or set up a
spare) and the recovery R . Here R is the time needed for a complete reload from
the checkpoint (and R = C if read/write operations from/to the stable storage have
the same speed). We derive that:

t lostG = D + R + T ff
G

2
(1.43)

• If TG > PG − CL : in this case, we have periodic checkpoints, and the amount of
execution which needs to be redone after a failure corresponds to half a checkpoint
period on average, so that:

t lostG = D + R + PG
2

(1.44)

For t lostL (Library phase), we derive that
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t lostL = D + RL + ReconsABFT

Here, RL is the time for reloading the checkpoint of the Remainder dataset (and in
many cases RL = CL ). As for the Library dataset, there is no checkpoint to retrieve,
but instead it must be reconstructed from the ABFT checksums, which takes time
ReconsABFT .

Optimization: finding the optimal checkpoint interval in GENERAL phase.
We verify from Eqs. (1.39) and (1.42) that T final

L is always a constant. Indeed, we
derive that:

T final
L = 1

1 − D+RL+ReconsABFT
µ

× (φ × TL + CL) (1.45)

As for T final
G , it depends on the value of TG : it is constant when TG is small. In

that case, we derive that:

T final
G = 1

1 − D+R+ TG+CL
2

µ

×
(
TG + CL

)
(1.46)

The interesting case is when TG is large: in that case, we have to determine the
optimal value of the checkpointing period PG which minimizes T final

G . We use an
approximation here: we assume that we have an integer number of periods, and the
last periodic checkpoint is of size C . Note that the larger TG , the more accurate
the approximation. From Eqs. (1.38), (1.41) and (1.44), we derive the following
simplified expression:

T final
G = TG

X
where X =

(
1 − C

PG

)(

1 − D + R + PG
2

µ

)

(1.47)

We rewrite:

X =
(
1 − C

2µ

)
− PG

2µ
− C(µ − D − R)

µPG

The maximum of X gives the optimal period Popt
G . Differentiating X as a function

of PG , we find that it is obtained for:

Popt
G =

√
2C(µ − D − R) (1.48)

We retrieve Eq.1.9 of Sect. 1.3.1 (as expected). Plugging the value of Popt
G back into

Eq. (1.47) provides the optimal value of T final
G when TG is large. We conclude this

with reminding the word of caution given at the end of Sect. 1.3.2.1): the optimal
value of the waste is only a first-order approximation, not an exact value. Just as
in [25, 69], the formula only holds when µ, the value of the MTBF, is large with
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respect to the other resilience parameters. Owing to this hypothesis, we can neglect
the probability of several failures occurring during the same checkpointing period.

Comparisonof the scalability of approaches. TheABFT&PeriodicCkpt approach
is expected to provide better performance when a significant time is spent in the
Library phase, and when the failure rate implies a small optimal checkpointing
period. If the checkpointing period is large (because failures are rare), or if the dura-
tion of the Library phase is small, then the optimal checkpointing interval becomes
larger than the duration of the Library phase, and the algorithm automatically
resorts to the periodic checkpointing protocol. This can also be the case when the
epoch itself is smaller than (or of the same order of magnitude as) the optimal check-
pointing interval (i.e., when the application does a fast switching between Library
and General phases).

However, consider such an application that frequently switches between (rel-
atively short) Library and General phases. When porting that application to a
future larger scale machine, the number of nodes that are involved in the execution
will increase, and at the same time, the amount of memory on which the ABFT
operation is applied will grow (following Gustafson’s law [37]). This has a double
impact: the time spent in the ABFT routine increases, while at the same time, the
MTBF of the machine decreases. As an illustration, we evaluate quantitatively how
this scaling factor impacts the relative performance of the ABFT&PeriodicCkpt
and a traditional periodic checkpointing approach.

First, we consider the case of an application where the Library and General
phases scale at the same rate.We take the example of linear algebra kernels operating
on 2D-arrays (matrices), that scale in O(n3) of the array order n (in both phases).
Following a weak scaling approach, the application uses a fixed amount of memory
Mind per node, and when increasing the number x of nodes, the total amount of
memory increases linearly as M = xMind . Thus O(n2) = O(x), and the parallel
completion time of the O(n3) operations, assuming perfect parallelism, scales in
O(

√
x).

To instantiate this case, we take an application that would last a thousand minutes
at 100,000 nodes (the scaling factor corresponding to an operation in O(n3) is then
applied when varying the number of nodes), and consisting for 80% of a Library
phase, and 20% of aGeneral phase.We set the duration of the complete checkpoint
and rollback (C and R , respectively) to 1 minute when 100,000 nodes are involved,
and we scale this value linearly with the total amount of memory, when varying the
number of nodes. The MTBF at 100,000 nodes is set to 1 failure every day, and
this also scales linearly with the number of components. The ABFT overheads, and
the downtime, are set to the same values as in the previous section, and 80% of the
application memory (ML ) is touched by the Library phase.

Given these parameters, Fig. 1.27 shows (i) the relative waste of periodic check-
pointing and ABFT&PeriodicCkpt, as a function of the number of nodes, and (ii)
the average number of faults that each execution will have to deal with to complete.
The expected number of faults is the ratio of the application duration by the platform
MTBF (which decreases when the number of nodes increases, generating more fail-
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Fig. 1.27 Total waste for periodic checkpointing and ABFT&PeriodicCkpt, when considering
the weak scaling of an application with a fixed ratio of 80% spent in a Library routine

ures). The fault-free execution time increases with the number of nodes (as noted
above), and the fault-tolerant execution time is also increased by the waste due to
the protocol. Thus, the total execution time of periodic checkpointing is larger at 1
million nodes than the total execution time of ABFT&PeriodicCkpt at the same
scale, which explains why more failures happen for these protocols.

Up to approximately 100,000 nodes, the fault-free overhead of ABFT negatively
impacts the waste of the ABFT&PeriodicCkpt approach, compared to periodic
checkpointing. Because the MTBF on the platform is very large compared to the
application execution time (and hence to the duration of each Library phase), the
periodic checkpointing approach has a very large checkpointing interval, introducing
very fewcheckpoints, thus a small failure-free overhead.Because failures are rare, the
cost due to time lost at rollbacks does not overcome the benefits of a small failure-free
overhead, while the ABFT technique must pay the linear overhead of maintaining
the redundancy information during the whole computation of the Library phase.

Once the number of nodes reaches 100,000, however, two things happen: failures
become more frequent, and the time lost due to failures starts to impact rollback
recovery approaches. Thus, the optimal checkpointing interval of periodic check-
pointing becomes smaller, introducing more checkpointing overheads. During 80%
of the execution, however, theABFT&PeriodicCkpt approach can avoid these over-
heads, and when they reach the level of linear overheads due to the ABFT tech-
nique,ABFT&PeriodicCkpt starts to scale better than both periodic checkpointing
approaches.

All protocols have to resort to checkpointing during the General phase of the
application. Thus, if failures hit during this phase (which happens 20% of the time in
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Fig. 1.28 Total waste for ABFT&PeriodicCkpt and periodic checkpointing when considering
the weak scaling of an application with variable ratio of time spent in a Library routine

this example), they will all have to resort to rollbacking and lose some computation
time. Hence, when the number of nodes increases and the MTBF decreases, eventu-
ally, the time spent in rollbacking and recomputing, which is linear in the number of
faults, will increase the waste of all algorithms. However, one can see that this part
is better controlled by the ABFT&PeriodicCkpt algorithm.

Next, we consider the case of an unbalanced General phase: consider an appli-
cation where the Library phase has a cost O(n3) (where n is the problem size),
as above, but where the General phase consists of O(n2) operations. This kind of
behavior is reflected in many applications where matrix data is updated or modi-
fied between consecutive calls to computation kernels. Then, the time spent in the
Library phase will increase faster with the number of nodes than the time spent
in the General phase, varying α . This is what is represented in Fig.1.28. We
took the same scenario as above for Fig. 1.27, but α is a function of the number of
nodes chosen such that at 100,000 nodes, α = T final

L /T final = 0.8, and everywhere,
T final
L = O(n3) = O(

√
x), and T final

PC = O(n2) = O(1). We give the value of α

under the number of nodes, to show how the fraction of time spent in Library phases
increases with the number of nodes.

The periodic checkpointing protocol is not impacted by this change, and behaves
exactly as in Fig.1.27. Note, however, that T final = T final

L + T final
PC progresses at

a lower rate in this scenario than in the previous scenario, because T final
PC does not

increase with the number of nodes. Thus, the average number of faults observed for
all protocols is much smaller in this scenario.

The efficiency on ABFT&PeriodicCkpt, however, is more significant. The lat-
ter protocol benefits from the increased α ratio in both cases: since more time is
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Fig. 1.29 Error and
detection latency

TimeXe Xd

fault Detection

spent in the Library phase, periodic checkpointing is de-activated for relatively
longer periods. Moreover, this increases the probability that a failure will happen
during the Library phase, where the recovery cost is greatly reduced using ABFT
techniques. Thus, ABFT&PeriodicCkpt is capable of mitigating failures at a much
smaller overhead than simple periodic checkpointing, and more importantly with
better scalability.

1.6 Silent Errors

This section deals with techniques to cope with silent errors. We focus on a general-
purpose approach that combines checkpointing and (abstract) verification mecha-
nisms. Section1.6.1 provides some background, while Sect. 1.6.2 briefly surveys
different approaches form the literature. Then Sect. 1.6.3 details the performance
model for the checkpoint/verification approach and explains how to determine the
optimal pattern minimizing the waste.

1.6.1 Motivation

Checkpoint and rollback recovery techniques assume reliable error detection, and
therefore apply to fail-stop failures, such as for instance the crash of a resource.
In this section, we revisit checkpoint protocols in the context of silent errors, also
called silent data corruption. Such errors must be accounted for when executing
HPC applications [58, 61, 74–76]. The cause for silent errors may be for instance
soft efforts in L1 cache, or bit flips due to cosmic radiation. The problem is that the
detection of a silent error is not immediate, but will only manifest later as a failure,
once the corrupted data has impacted the result (see Fig. 1.29). If the error stroke
before the last checkpoint, and is detected after that checkpoint, then the checkpoint
is corrupted, and cannot be used to restore the application. In the case of fail-stop
failures, a checkpoint cannot contain a corrupted state, because a process subject
to failure will not create a checkpoint or participate to the application: failures are
naturally contained to failed processes; in the case of silent errors, however, faults
can propagate to other processes and checkpoints, because processes continue to
participate and follow the protocol during the interval that separates the error and its
detection.



1 Fault Tolerance Techniques for High-Performance Computing 71

To alleviate this issue, one may envision to keep several checkpoints in memory,
and to restore the application from the last valid checkpoint, thereby rolling back
to the last correct state of the application [55]. This multiple-checkpoint approach
has three major drawbacks. First, it is very demanding in terms of stable storage:
each checkpoint typically represents a copy of the entire memory footprint of the
application, which may well correspond to several terabytes. The second drawback
is the possibility of fatal failures. Indeed, if we keep k checkpoints in memory, the
approach assumes that the error that is currently detected did not strike before all the
checkpoints still kept in memory, which would be fatal: in that latter case, all live
checkpoints are corrupted, and one would have to re-execute the entire application
from scratch. The probability of a fatal failure is evaluated in [3] for various error
distribution laws and values of k. The third drawback of the approach is the most
serious, and applies even without memory constraints, i.e., if we could store an
infinite number of checkpoints in storage. The critical question is to determine which
checkpoint is the last valid one. We need this information to safely recover from that
point on. However, because of the detection latency (which is unknown), we do not
know when the silent error has indeed occurred, hence we cannot identify the last
valid checkpoint, unless some verification system is enforced.

This section introduces algorithms coupling verification and checkpointing, and
shows how to analytically determine the best balance of verifications between check-
points so as to minimize platform waste. In this (realistic) model, silent errors are
detected only when some verification mechanism is executed. This approach is
agnostic of the nature of this verification mechanism (checksum, error correcting
code, coherence tests, etc.). This approach is also fully general-purpose, although
application-specific information, if available, can always be used to decrease the cost
of verification.

The simplest protocol (see Fig. 1.30) would be to perform a verification just before
taking each checkpoint. If the verification succeeds, then one can safely store the
checkpoint and mark it as valid. If the verification fails, then an error has struck since
the last checkpoint, which was duly verified, and one can safely recover from that
checkpoint to resume the execution of the application. This protocolwith verifications
eliminates fatal errors that would corrupt all live checkpoints and cause to restart
execution from scratch. However, we still need to assume that both checkpoints and
verifications are executed in a reliable mode.

There is room for optimization. Consider the second pattern illustrated in Fig. 1.31
with three verifications per checkpoint. There are three chunks of size w, each fol-
lowed by a verification. Every third verification is followed by a checkpoint. We
assume that w = W/3 to ensure that both patterns correspond to the same amount

TimeW W

fault
Detection

V C V C V C

Fig. 1.30 The first pattern with one verification before each checkpoint
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Fig. 1.31 The second pattern with three verifications per checkpoint

of work, W . Just as for the first pattern, a single checkpoint needs to be kept in
memory, owing to the verifications. Also, as before, each error leads to re-executing
the work since the last checkpoint. But detection occurs much more rapidly in the
second pattern, owing to the intermediate verifications. If the error strikes in the first
of the three chunks, it is detected by the first verification, and only the first chunk
is re-executed. Similarly, if the error strikes in the second chunk (as illustrated in
the figure), it is detected by the second verification, and the first two chunks are
re-executed. The entire pattern of work needs to be re-executed only if the error
strikes during the third chunk. On average, the amount of work to re-execute is
(1 + 2 + 3)w/3 = 2w = 2W/3. On the contrary, in the first pattern of Fig. 1.30,
the amount of work to re-execute always is W , because the error is never detected
before the end of the pattern. Hence the second pattern leads to a 33% gain in re-
execution time. However, this comes at the price of three times as many verifications.
This overhead is paid in every failure-free execution, and may be an overkill if the
verification mechanism is too costly.

This little example shows that the optimization problem looks difficult. It can be
stated as follows: given the cost of checkpointing C , recovery R, and verification V ,
what is the optimal strategy to minimize the (expectation of the) waste? A strategy is
a periodic pattern of checkpoints and verifications, interleaved with work segments,
that repeats over time. The length of the work segments also depends upon the
platformMTBFµ. For example, with a single checkpoint and no verification (which
corresponds to the classical approach for fail-stop failures), recall from Theorem 1.1
that the optimal length of the work segment can be approximated as

√
2µC . Given a

periodic pattern with checkpoints and verifications, can we extend this formula and
compute similar approximations?

We conclude this introduction by providing a practical example of the check-
point and verification mechanisms under study. A nice instance of this approach is
given by Chen [21], who deals with sparse iterative solvers. Chen considers a sim-
ple method such as the PCG, the Preconditioned Conjugate Gradient method, and
aims at protecting the execution from arithmetic errors in the ALU. Chen’s approach
performs a periodic verification every d iterations, and a periodic checkpoint every
d × c iterations, which is a particular case of the pattern with p = 1 and q = c.
For PCG, the verification amounts to checking the orthogonality of two vectors and
to recomputing and checking the residual, while the cost of checkpointing is that
of storing three vectors. The cost of a checkpoint is smaller than the cost of the
verification, which itself is smaller than the cost of an iteration, especially when the
preconditioner requires much more flops than a sparse matrix-vector product. In this
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context, Chen [21] shows how to numerically estimate the best values of the para-
meters d and c. The results given in Sect. 1.6.3 show using equidistant verifications,
as suggested in [21], is asymptotically optimal when using a pattern with a single
checkpoint (p = 1), and enable to determine the best pattern with p checkpoints and
q verifications as a function of C , R, and V , and the MTBF µ.

1.6.2 Other Approaches

In this section, we briefly survey other approaches to detect and/or correct silent
errors. Considerable efforts have been directed at error-checking to reveal silent
errors. Error detection is usually very costly. Hardware mechanisms, such as ECC
memory, can detect and even correct a fraction of errors, but in practice they are
complemented with software techniques. General-purpose techniques are based on
replication, which we have already met in Sect. 1.4.2: using replication [31, 33, 66,
72], one can compare the results of both replicas and detect a silent error. Using
TMR [56] would allow to correct the error (by voting) after detection. Note that
another approach based on checkpointing and replication is proposed in [60], in
order to detect and enable fast recovery of applications from both silent errors and
hard errors.

Coming back to verification mechanisms, application-specific information can be
very useful to enable ad-hoc solutions, that dramatically decrease the cost of detec-
tion. Many techniques have been advocated. They include memory scrubbing [48],
but also ABFT techniques [8, 46, 68], such as coding for the sparse-matrix vector
multiplication kernel [68], and coupling a higher-order with a lower-order scheme
for Ordinary Differential Equations [6]. These methods can only detect an error but
do not correct it. Self-stabilizing corrections after error detection in the conjugate
gradient method are investigated by Sao and Vuduc [65]. Also, Heroux and Hoem-
men [44] design a fault-tolerant GMRES capable of converging despite silent errors,
and Bronevetsky and de Supinski [17] provide a comparative study of detection costs
for iterative methods. Elliot et al. [30] combine partial redundancy and checkpoint-
ing, and confirm the benefit of dual and triple redundancy. The drawback is that twice
the number of processing resources is required (for dual redundancy).

As already mentioned, the combined checkpoint/verification approach is agnostic
of the underlying error-detection technique and takes the cost of verification as an
input parameter to the model.

1.6.3 Optimal Pattern

In this section, we detail the performance model to assess the efficiency of any
checkpoint/verification pattern. Then we show how to determine the best pattern.
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Fig. 1.32 The BalancedAlgorithm with five verifications for two checkpoints

1.6.3.1 Model for Patterns

Consider a periodic pattern with p checkpoints and q verifications, and whose total
length is S = pC + qV +W . Here, W is the work that is executed during the whole
pattern, and it is divided into several chunks that are each followed by a verification, or
a checkpoint, or both. Checkpoints and verifications are at arbitrary location within
the pattern. The only constraint is that the pattern always ends by a verification
immediately followed by a checkpoint: this is to enforce that the last checkpoint is
always valid, thereby ruling out the risk of a fatal failure. In the example of Fig. 1.31,
we have three chunks of same size w, hence W = 3w and S = C + 3V + 3w. The
example of Fig. 1.32 represents a more complicated pattern, with two checkpoints
and five verifications. The two checkpoints are equidistant in the pattern, and so are
the five verifications, hence the six chunks of size either w or 2w, for a total work
W = 10w, and S = 2C + 5V + 10w. The rationale for using such chunk sizes in
Fig. 1.32 is given in Sect. 1.6.3.2.

We compute the waste incurred by the use of a pattern similarly to what we did for
fail-stop failures in Sect. 1.3.1. We consider a periodic pattern with p checkpoints,
q verifications, work W , and total length S = pC + qV + W . We assume a a
selective reliabilitymodel where checkpoint, recovery and verification are error-free
operations. The input parameters are the following:

• the cost V of the verification mechanism;
• the cost C of a checkpoint;
• the cost R of a recovery;
• the platform MTBF µ.

We aim at deriving the counterpart of Eq. (1.33) for silent errors. We easily derive
that the waste in a fault-free execution isWasteff = pC+qV

S , and that the waste due
to silent errors striking during execution. is which is the waste due to checkpointing
isWastefail = Tlost

µ , where Tlost is the expected time lost due to each error. The value
of Tlost is more complicated to compute than for fail-stop errors, because it depends
upon which pattern is used. Before computing Tlost for arbitrary values of p and q
in Sect. 1.6.3.2, we give two examples.

The first example is for the simple pattern of Fig. 1.30. We have p = q = 1, a
single chunk of size w = W , and a pattern of size S = C + V +W . Computing Tlost
for this pattern goes as follows: whenever an error strikes, it is detected at the end
of the work, during the verification. We first recover from the last checkpoint, then
re-execute the entire work, and finally redo the verification. This leads to Tlost =
R +W + V = R + S − C . From Eq. (1.33), we obtain that
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Waste = 1 −
(
1 − R + S − C

µ

)(
1 − C + V

S

)
= aS + b

S
+ c, (1.49)

where a = 1
µ , b = (C + V )(1+ C−R

µ ) and c = R−V−2C
µ . The value that minimizes

the waste is S = Sopt, and the optimal waste is Wasteopt, where

Sopt =
√
b
a
=
√
(C + V )(µ+ C − R) and Wasteopt = 2

√
ab + c. (1.50)

Just as for fail-stop failures, we point out that this approach leads to a first-order
approximationof the optimal pattern, not to anoptimal value.As always, the approach
is valid when µ is large in front of S, and of all parameters R, C and V . When this

is the case, we derive that Sopt ≈ √
(C + V )µ and Wasteopt ≈ 2

√
C+V
µ . It is very

interesting to make a comparison with the optimal checkpointing period TFO (see
Eq. (1.9)) when dealing with fatal failures: we had TFO ≈ √

2Cµ. In essence, the
factor 2 comes from the fact that we re-execute only half the period on average with
a fatal failure, because the detection is instantaneous. In our case, we always have
to re-execute the entire pattern. And of course, we have to replace C by C + V , to
account for the cost of the verification mechanism.

The second example is for the BalancedAlgorithm illustrated in Fig. 1.32. We
have p = 2, q = 5, six chunks of size w or 2w, W = 10w, and a pattern of size
S = 2C + 5V + W . Note that it may now be the case that we store an invalid
checkpoint, if the error strikes during the third chunk (of size w, just before the
non-verified checkpoint), and therefore we must keep two checkpoints in memory to
avoid the risk of fatal failures. When the verification is done at the end of the fourth
chunk, if it is correct, then we can mark the preceding checkpoint as valid and keep
only this checkpoint in memory. Because q > p, there are never two consecutive
checkpoints without a verification between them, and at most two checkpoints need
to be kept in memory. The time lost due to an error depends upon where it strikes:

• With probability 2w/W , the error strikes in the first chunk. It is detected by the
first verification, and the time lost is R+2w+V , since we recover, and re-execute
the work and the verification.

• With probability 2w/W , the error strikes in the second chunk. It is detected by the
second verification, and the time lost is R+4w+2V , since we recover, re-execute
the work and both verifications.

• With probabilityw/W , the error strikes in the third chunk. It is detected by the third
verification, and we roll back to the last checkpoint, recover and verify it. We find
it invalid, because the error struck before taking it. We roll back to the beginning of
the pattern and recover from that checkpoint. The time lost is 2R+ 6w+C + 4V ,
since we recover twice, re-execute the work up to the third verification, redo
the checkpoint and the three verifications, and add the verification of the invalid
checkpoint.

• With probability w/W , the error strikes in the fourth chunk. It is detected by the
third verification. We roll back to the previous checkpoint, recover and verify it.
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In this case, it is valid, since the error struck after the checkpoint. The time lost is
R + w+ 2V .

• With probability 2w/W , the error strikes in the fifth chunk. Because there was a
valid verification after the checkpoint, we do not need to verify it again, and the
time lost is R + 3w+ 2V .

• With probability 2w/W , the error strikes in the sixth and last chunk. A similar
reasoning shows that the time lost is R + 5w+ 3V .

Averaging over all cases, we derive that Tlost = 11R
10 + 35w

10 + C
10 + 22V

10 . We then
proceed as with the first example to derive the optimal size S of the pattern. We

obtain Sopt =
√

b
a and Wasteopt = 2

√
ab + c (see Eq. (1.50)), where a = 7µ

20 ,

b = (2C + 5V )(1 − 1
20µ(22R − 12C + 9V )) and c = 1

20µ(22R − 26C − 17V ).

When µ is large, we have Sopt ≈
√

20
7 (2C + 5V )µ and Wasteopt ≈ 2

√
7(2C+5V )

20µ .

1.6.3.2 Optimal Pattern

In this section, we generalize from the examples and provide a generic expression
for the waste when the platformMTBFµ is large in front of all resilience parameters
R, C and V . Consider a general pattern of size S = pC + qV +W , with p ≤ q. We
haveWasteff = off

S , where off = pC+qV is the fault-free overhead due to inserting
p checkpoints and q verifications within the pattern. We also haveWastefail = Tlost

µ ,
where Tlost is the time lost each time an error strikes and includes two components:
re-executing a fraction of the total work W of the pattern, and computing additional
verifications, checkpoints and recoveries (see the previous examples). The general
form of Tlost is thus Tlost = freW + α where fre stands for fraction of work that
is re-executed due to failures; α is a constant that is a linear combination of C , V
and R. For the first example (Fig. 1.30), we have fre = 1. For the second example
(Fig. 1.32), we have fre = 7

20 (recall that w = W/10). For convenience, we use an
equivalent form

Tlost = freS + β, (1.51)

where β = α − fre(pC + qV ) is another constant. When the platform MTBF µ is
large in front of all resilience parameters R, C and V , we can identify the dominant
term in the optimal waste Wasteopt. Indeed, in that case, the constant β becomes
negligible in front of µ, and we derive that

Sopt =
√

off
fre

× √
µ+ o(

√
µ), (1.52)

and that the optimal waste is

Wasteopt = 2
√
off fre

√
1
µ

+ o(

√
1
µ
). (1.53)
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This equation shows that the optimal pattern when µ is large is obtained when the
product off fre is minimal. This calls for a trade-off, as a smaller value of off with
few checkpoints and verifications leads to a larger re-execution time, hence to a
larger value of fre. For instance, coming back to the examples of Figs.1.30 and 1.32,
we readily see that the second pattern is better than the first one for large values
of µ whenever V > 2C/5, which corresponds to the condition 7

20 × (5V + 2C) >

1 × (V + C).
For a general pattern of size S = pC + qV + W , with p ≤ q, we always have

off = off(p, q) = pC + qV and we aim at (asymptotically) minimizing fre =
fre(p, q), the expected fraction of the work that is re-executed, by determining the
optimal size of each work segment. It turns out that fre(p, q) is minimized when
the pattern has pq same-size intervals and when the checkpoints and verifications
are equally spaced among these intervals as in the BalancedAlgorithm, in which
case fre(p, q) = p+q

2pq . We first prove this result for p = 1 before moving to the
general case. Finally, we explain how to choose the optimal pattern given values of
C and V .

Theorem 1.2 The minimal value of fre(1, q) is obtained for same-size chunks and
it is fre(1, q) = q+1

2q .

Proof Forq = 1,we already know from the study of thefirst example that fre(1, 1) =
1. Consider a pattern with q ≥ 2 verifications, executing a total work W . Let αiW
be the size of the i-th chunk, where

∑q
i=1 αi = 1 (see Fig. 1.33). We compute

the expected fraction of work that is re-executed when a failure strikes the pattern
as follows. With probability αi , the failure strikes in the i-th chunk. The error is
detected by the i-th verification, we roll back to the beginning of the pattern, so we
re-execute the first i chunks. Altogether, the amount of work that is re-executed is
∑q

i=1

(
αi
∑i

j=1 α jW
)
, hence

fre(1, q) =
q∑

i=1

⎛

⎝αi

i∑

j=1

α j

⎞

⎠ . (1.54)

What is the minimal value of fre(1, q) in Eq. (1.54) under the constraint
∑q

i=1 αi =
1? We rewrite

fre(1, q) =
1
2

( q∑

i=1

αi

)2

+ 1
2

q∑

i=1

α2
i = 1

2

(

1+
q∑

i=1

α2
i

)

,

Timeα1W α2W α3W

V C V V V C

Fig. 1.33 A pattern with different-size chunks, for p = 1 and q = 3
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and by convexity,we see that fre isminimalwhen all theαi ’s have the same value 1/q.
In that case, we derive that fre(1, q) = 1

2 (1 +∑q
i=1

1
q2 ) =

q+1
2q , which concludes

the proof.

When p = 1, BalancedAlgorithm uses q same-size chunks. Theorem 1.2
shows that this is optimal.

Theorem 1.3 For a patternwith p ≥ 1, theminimal value of fre(p, q) is fre(p, q) =
p+q
2pq , and it is obtained with the BalancedAlgorithm.

Proof Consider an arbitrary pattern with p checkpoints, q ≥ p verifications and
total work W . The distribution of the checkpoints and verifications is unknown, and
different-size chunks can be used. The only assumption is that the pattern ends by a
verification followed by a checkpoint.

The main idea of the proof is to compare the gain in re-execution time due to the
p − 1 intermediate checkpoints. Let f (p)re be the fraction of work that is re-executed
for the pattern, and let f (1)re be the fraction of work that is re-executed for the same
pattern, but where the p − 1 first checkpoints have been suppressed. Clearly, f (p)re is
smaller than f (1)re , because the additional checkpoints save some roll-backs, and we
aim at maximizing their difference.

In the original pattern, let αiW be the amount of work before the i-th checkpoint,
for 1 ≤ i ≤ p (and with

∑p
i=1 αi = 1). Figure1.34 presents an example with p = 3.

What is the gain due to the presence of the p − 1 intermediate checkpoints? If an
error strikes before the first checkpoint, which happens with probability α1, there
is no gain, because we always rollback from the beginning of the pattern. This is
true regardless of the number and distribution of the q verifications in the pattern. If
an error strikes after the first checkpoint and before the second one, which happens
with probability α2, we do have a gain: instead of rolling back to the beginning of
the pattern, we rollback only to the first checkpoint, which saves α1W units of re-
executed work. Again, this is true regardless of the number and distribution of the q
verifications in the pattern. For the general case, if an error strikes after the (i −1)-th
checkpoint and before the i-th one, which happens with probability αi , the gain is∑i−1

j=1 α jW . We derive that

f (1)re − f (p)re =
p∑

i=1

⎛

⎝αi

i−1∑

j=1

α j

⎞

⎠ .

Timeα1W α2W α3W

V C C C V C

Fig. 1.34 A pattern with different-size chunks, with 3 checkpoints (we do not show where inter-
mediate verifications are located)
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Similarly to the proof of Theorem 1.2, we have

p∑

i=1

⎛

⎝αi

i−1∑

j=1

α j

⎞

⎠ = 1
2

⎛

⎝
( p∑

i=1

αi

)2

−
p∑

i=1

α2
i

⎞

⎠ = 1
2

(

1 −
p∑

i=1

α2
i

)

and by convexity, the difference f (1)re − f (p)re is maximal when αi = 1/p for all i . In
that latter case, f (1)re − f (p)re =∑p

i=1(i −1)/p2 = (p−1)/p2. This result shows that
the checkpoints should be equipartitioned in the pattern, regardless of the location
of the verifications.

To conclude the proof, we now use Theorem 1.2: to minimize the value of f (1)re ,
we should equipartition the verifications too. In that case, we have f (1)re = q+1

2q and

f (p)re = q+1
2q − p−1

2p = q+p
2pq , which concludes the proof.

Theorem 1.3 shows that BalancedAlgorithm is the optimal pattern with p
checkpoints and q verifications when µ is large. An important consequence of this
result is that we never need to keep more than two checkpoints in memory when
p ≤ q, because it is optimal to regularly interleave checkpoints and verifications.

To conclude this study,we outline a simple procedure to determine the best pattern.
We start with the following result:

Theorem 1.4 Assume that µ is large in front of C, R and V , and that
√

V
C is a

rational number u
v , where u and v are relatively prime. Then the optimal pattern

Sopt is obtained with the BalancedAlgorithm, using p = u checkpoints, q = v

verifications, and pq equal-size chunks of total length
√

2pq(pC+qV )µ
p+q .

We prove this theorem before discussing the case where
√

V
C is not a rational

number.

Proof Assume that V = γC , where γ = u2

v2 , with u and v relatively prime integers.
Then, the product off fre can be expressed as

off fre =
p + q
2pq

(pC + qV ) = C × p + q
2

(
1
q
+ γ

p

)
.

Therefore, given a value of C and a value of V , i.e., given γ , the goal is to minimize
the function p+q

2

(
1
q + γ

p

)
with 1 ≤ p ≤ q, and p, q taking integer values.

Let p = λ × q. Then we aim at minimizing

1+ λ

2

(
1+ γ

λ

)
= λ

2
+ γ

2λ
+ 1+ γ

2
,

and we obtain λopt = √
γ =

√
V
C = u

v . Hence the best pattern is that returned by
the BalancedAlgorithm with p = u checkpoints and q = v verifications. This
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pattern uses pq equal-size chunks whose total length is given by Eq. (1.52), hence
the result.

For instance, for V = 4 and C = 9, we obtain λopt =
√

V
C = 2

3 , and a balanced
pattern with p = 2 and q = 3 is optimal. This pattern will have 6 equal-size chunks

whose total length is
√

12(2C+3V )µ
5 = 6

√
2µ. However, if V = C = 9, then λopt = 1

and the best solution is the base algorithm with p = q = 1 and a single chunk of
size

√
(C + V )µ = √

13µ.

In some cases, λopt =
√

V
C may not be a rational number, andwe need to find good

approximations of p and q in order to minimize the asymptotic waste. A solution is
to try all reasonable values of q, say from 1 to 50, and to compute the asymptotic
waste achieved with p1 = ⌊λopt × q⌋ and p2 = ⌈λopt × q⌉, hence testing at most
100 configurations (p, q). Altogether, we can compute the best pattern with q ≤ 50
in constant time.

1.7 Conclusion

This chapter presented an overview of the fault tolerance techniques most frequently
used in HPC. Large-scale machines consist of components that are robust but not
perfectly reliable. They combine a number of components that grows exponentially
and will suffer from failures at a rate inversely proportional to that number. Thus, to
cope with such failures, we presented two sets of approaches:

• On the one hand, middleware, hardware, and libraries can implement general tech-
niques to conceal failures from higher levels of the software stack, enabling the
execution of genuine applications not designed for fault tolerance. Behind such
approaches, periodic checkpointing with rollback-recovery is the most popular
technique used in HPC, because of its multiple uses (fault tolerance, but also
post-mortem analysis of behavior, and validation), and potential better usage of
resources. We presented many variations on the protocols of these methods, and
discussed practical issues, like checkpoint creation and storage.
At the heart of periodic checkpointing with rollback recovery lays an optimization
problem: rollback happens when failures occurs; it induces re-execution, hence
resource consumption to tolerate the failure that occurred; frequent checkpoint-
ing reduces that resource consumption. However, checkpointing also consumes
resources, even when failures do not occur; thus checkpointing too often becomes
a source of inefficiency.We presented probabilistic performancemodels that allow
to deduce the optimal trade-off between frequent checkpoints and high failure-free
overheads for the large collection of protocols that we presented before.
The costs of checkpointing and coordinated rollback are the major source of over-
heads in these protocols: future large scale systems can hope to rely on rollback
recovery only if the time spent in checkpointing and rolling-back can be kept orders
of magnitude under the time between failures. The last protocol we studied, that
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uses the memory of the peers to store checkpoints, aims precisely at this. But since
the checkpoints become stored in memory, that storage becomes unreliable, and
mitigating the risk of a non-recoverable failure reenters the trade-off. Here again,
probabilistic models allow to quantify this risk, to guide the decision of resource
usage optimization.

• On the other hand, by letting the hardware and middleware expose the failures to
the higher-level libraries and the application (while tolerating failures at their level
to continue providing their service), we showed how a much better efficiency can
be expected. We presented briefly the current efforts pursued in the MPI standard-
ization body to allow such behavior in high-performance libraries and application.
Then, we illustrated over complex realistic examples how some applications can
take advantage of failures awareness to provide high efficiency and fault tolerance.
Because these techniques are application-specific, many applications may not be
capable of using them. To address this issue, we presented a composition tech-
nique that enables libraries to mask failures that are exposed to them from a non
fault-tolerant application. That composition relies on the general rollback-recovery
technique, but allows to disable periodic checkpointing during long phases where
the library controls the execution, featuring the high-efficiency of application-
specific techniques together with the generality of rollback-recovery.

To conclude, we considered the case of silent errors: silent errors, by definition,
do not manifest as a failure at the moment they strike; the application may slowly
diverge from a correct behavior, and the data be corrupted before the error is detected.
Because of this, they pose a new challenge to fault tolerance techniques.We presented
how multiple rollback points may become necessary, and how harder it becomes to
decide when to rollback. We also presented how application-specific techniques can
mitigate these issue by providing data consistency checkers (validators), allowing to
detect the occurrence of a silent error not necessarily when it happens, but before
critical steps.

Designing a fault-tolerant system is a complex task that introduces new program-
ming and optimization challenges. However, the combination of the whole spectrum
of techniques, from application-specific to general tools, at different levels of the
software stack, allows to tolerate a large range of failures with the high efficiency
expected in HPC. In the rest of this book, experts in fault tolerance and HPC have
contributed with technical chapters, in which they dig deeper into some of the top-
ics that were overviewed in this chapter. Their contributions present the most recent
advances in an intellectually buoyant research field. We hope they will inspire innov-
ative solutions and the adoption of sound approaches to tolerate failures at large scale.
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